The bimodal effect of interleukin 1 on rat pancreatic beta-cells--stimulation followed by inhibition--depends upon dose, duration of exposure, and ambient glucose concentration

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

To investigate the hypothesis that interleukin 1 initially stimulates and then suppresses beta-cell function and that this sequential effect is directly related to interleukin 1 dose, duration of exposure, and ambient glucose concentration, insulin release was measured from cultured newborn rat islets exposed for 6 h to 6 days to interleukin 1 at doses ranging from 20 to 2000 ng/l at glucose concentrations of 3.3, 5.5 and 11 mmol/l. After 6 h of exposure and at all three glucose levels, all doses of interleukin 1 stimulated insulin release, maximal stimulation (370% of control) being observed at 5.5 mmol/l glucose and 100 ng/l interleukin 1. In contrast, after 6 days, all doses of interleukin 1 were inhibitory irrespective of glucose level, maximal inhibition (90%) being observed at 11 mmol/l glucose and 2000 ng/l interleukin 1. At 24 and 48 h of exposure, the biphasic effect of interleukin 1 was observed: lower doses of interleukin 1 at lower glucose concentrations at 24 h being more stimulatory with transition to inhibition directly related to higher glucose levels, higher interleukin 1 doses, and longer exposure. After 48 h, 200 ng/l of interleukin 1 increased insulin release to 220% at 3.3 mmol/l glucose, but at 11 mmol/l glucose a 60% suppression was seen. On the basis of these data we suggest that interleukin 1's effect on beta-cells is bimodal: stimulation followed by inhibition. Increasing interleukin 1 dose and ambient glucose concentration shift this response to the left. Experimental results will, and in vivo effects may, depend upon these three variables.
TidsskriftActa Endocrinologica
Udgave nummer2
Sider (fra-til)307-11
Antal sider5
StatusUdgivet - okt. 1988

ID: 47974685