Recovery from desensitization in GluA2 AMPA receptors is affected by a single mutation in the N-terminal domain interface

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 2,17 MB, PDF-dokument

AMPA-type ionotropic glutamate receptors (AMPARs) are central to various neurological processes, including memory and learning. They assemble as homo- or heterotetramers of GluA1, GluA2, GluA3, and GluA4 subunits, each consisting of an N-terminal domain (NTD), a ligand-binding domain, a transmembrane domain, and a C-terminal domain. While AMPAR gating is primarily controlled by reconfiguration in the ligand-binding domain layer, our study focuses on the NTDs, which also influence gating, yet the underlying mechanism remains enigmatic. In this investigation, we employ molecular dynamics simulations to evaluate the NTD interface strength in GluA1, GluA2, and NTD mutants GluA2-H229N and GluA1-N222H. Our findings reveal that GluA1 has a significantly weaker NTD interface than GluA2. The NTD interface of GluA2 can be weakened by a single point mutation in the NTD dimer-of-dimer interface, namely H229N, which renders GluA2 more GluA1-like. Electrophysiology recordings demonstrate that this mutation also leads to slower recovery from desensitization. Moreover, we observe that lowering the pH induces more splayed NTD states and enhances desensitization in GluA2. We hypothesized that H229 was responsible for this pH sensitivity; however, GluA2-H229N was also affected by pH, meaning that H229 is not solely responsible and that protons exert their effect across multiple domains of the AMPAR. In summary, our work unveils an allosteric connection between the NTD interface strength and AMPAR desensitization.
OriginalsprogEngelsk
Artikelnummer105717
TidsskriftJournal of Biological Chemistry
Vol/bind300
Udgave nummer3
Antal sider10
ISSN0021-9258
DOI
StatusUdgivet - 2024

Bibliografisk note

Funding Information:
A. H. L. was funded by the Carlsberg Foundation (grant CF19–0288 ) and the Lundbeck Foundation (grant R347–2020–2339 ). A. M. P. was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Doctoral Scholarship.

Publisher Copyright:
© 2024

ID: 385260002