The chromosome-scale genomes of Dipterocarpus turbinatus and Hopea hainanensis (Dipterocarpaceae) provide insights into fragrant oleoresin biosynthesis and hardwood formation

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 2,84 MB, PDF-dokument

  • Sibo Wang
  • Hongping Liang
  • Hongli Wang
  • Linzhou Li
  • Yan Xu
  • Yang Liu
  • Min Liu
  • Jinpu Wei
  • Tao Ma
  • Cheng Le
  • Jinlong Yang
  • Chengzhong He
  • Jie Liu
  • Jianming Zhao
  • Yuxian Zhao
  • Lisby, Michael
  • Sunil Kumar Sahu
  • Huan Liu

Dipterocarpaceae are typical tropical plants (dipterocarp forests) that are famous for their high economic value because of their production of fragrant oleoresins, top-quality timber and usage in traditional Chinese medicine. Currently, the lack of Dipterocarpaceae genomes has been a limiting factor to decipher the fragrant oleoresin biosynthesis and gain evolutionary insights into high-quality wood formation in Dipterocarpaceae. We generated chromosome-level genome assemblies for two representative Dipterocarpaceae species viz. Dipterocarpus turbinatus Gaertn. f. and Hopea hainanensis Merr. et Chun. Our whole-genome duplication (WGD) analysis revealed that Dipterocarpaceae underwent a shared WGD event, which showed significant impacts on increased copy numbers of genes related to the biosynthesis of terpene, BAHD acyltransferases, fatty acid and benzenoid/phenylpropanoid, which probably confer to the formation of their characteristic fragrant oleoresin. Additionally, compared with common soft wood plants, the expansion of gene families was also found to be associated with wood formation, such as in CESA (cellulose synthase), CSLE (cellulose synthase-like protein E), laccase and peroxidase in Dipterocarpaceae genomes, which might also contribute to the formation of harder, stronger and high-density timbers. Finally, an integrative analysis on a combination of genomic, transcriptomic and metabolic data from different tissues provided further insights into the molecular basis of fragrant oleoresins biosynthesis and high-quality wood formation of Dipterocarpaceae. Our study contributes the first two representative genomes for Dipterocarpaceae, which are valuable genetic resources for further researches on the fragrant oleoresins and superior-quality timber, genome-assisted breeding and improvement, and conservation biology of this family.

OriginalsprogEngelsk
TidsskriftPlant Biotechnology Journal
Vol/bind20
Udgave nummer3
Sider (fra-til)538-553
Antal sider16
ISSN1467-7644
DOI
StatusUdgivet - 2022

Bibliografisk note

Funding Information:
This work was supported by National Key R&D Program of China (No. 2019YFC1711000), Major Science and Technology Projects of Yunnan Province (Digitalization, development and application of biotic resource, 202002AA100007), and the Shenzhen Municipal Government of China (No. JCYJ20151015162041454). This work is part of the 10KP project ( https://db.cngb.org/10kp/ ) (Cheng ., 2018 ). This work is also supported by China National GeneBank (CNGB; https://www.cngb.org/ ). et al

Publisher Copyright:
© 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 288050368