In-line Fluorescence Spectroscopy for Quantification of Low Amount of Active Pharmaceutical Ingredient

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt


  • Fulltext

    Forlagets udgivne version, 1,17 MB, PDF-dokument

The pharmaceutical industry is currently implementing new manufacturing principles and modernizing the related processing solutions. A key element in this development is implementation of process analytical technologies (PAT) for measuring product quality in a real-time mode, ideally for a continuously operating processing line. Near-infrared (NIR) spectroscopy is widely used for this purpose, but has limited use for low concentration formulations, due to its inherent detection limit. Light-induced fluorescence (LIF) spectroscopy is a PAT tool that can be used to quantify low concentrations of active pharmaceutical ingredient, and recent development of instrumentation has made it available for in-line applications. In this study, the content of tryptophan in a dynamic powder flow could be measured as low as 0.10 w/w % with LIF spectroscopy with good accuracy of RMSEP = 0.008 w/w %. Both partial least squares regression and support vector machines (SVM) were investigated, but we found SVM to be the better option due to non-linearities between the calibration test and the in-line measurements. With the use of SVM, LIF spectroscopy is a promising candidate for low concentration applications where NIR is not suitable.

TidsskriftJournal of Pharmaceutical Sciences
Udgave nummer9
Sider (fra-til)2406-2410
StatusUdgivet - 2022

Bibliografisk note

Publisher Copyright:
© 2022 The Authors

Antal downloads er baseret på statistik fra Google Scholar og

Ingen data tilgængelig

ID: 314963999