Doppler Ultrasound-Based Leg Blood Flow Assessment During Single-Leg Knee-Extensor Exercise in an Uncontrolled Setting

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Doppler ultrasound has revolutionized the assessment of organ blood flow and is widely used in research and clinical settings. While Doppler ultrasound-based assessment of contracting leg muscle blood flow is common in human studies, the reliability of this method requires further investigation. Therefore, this study aimed to investigate the within-day test-retest, between-day test-retest, and inter-rater reliability of Doppler ultrasound for assessing leg blood flow during rest and graded single-leg knee-extensions (0 W, 6 W, 12 W, and 18 W), with the ultrasound probe being removed between measurements. The study included thirty healthy subjects (age: 33 ± 9.3, male/female: 14/16) who visited the laboratory on two different experimental days separated by 10 days. The study did not control for major confounders such as nutritional state, time of day, or hormonal status. Across different exercise intensities, the results demonstrated high within-day reliability with a coefficient of variation (CV) ranging from 4.0% to 4.3%, acceptable between-day reliability with a CV ranging from 10.1% to 20.2%, and inter-rater reliability with a CV ranging from 17.9% to 26.8%. Therefore, in a real-life clinical scenario where controlling various environmental factors is challenging, Doppler ultrasound can be used to determine leg blood flow during submaximal single-leg knee-extensor exercise with high within-day reliability and acceptable between-day reliability when performed by the same sonographer.

OriginalsprogEngelsk
Artikelnummere65746
TidsskriftJournal of Visualized Experiments
Vol/bind2023
Udgave nummer202
ISSN1940-087X
DOI
StatusUdgivet - 2023

Bibliografisk note

Funding Information:
The Centre for Physical Activity Research (CFAS) is supported by TrygFonden (grants ID 101390 and ID 20045. JPH was supported by grants from Helsefonden and Rigshospitalet. During this work, RMGB was supported by a post.doc. grant from Rigshospitalet.

Publisher Copyright:
© 2023 JoVE.

ID: 377444327