Conductive vial electromembrane extraction of opioids from oral fluid

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 2,88 MB, PDF-dokument

The use of oral fluid as sample matrix has gained significance in the analysis of drugs of abuse due to its non-invasive nature. In this study, the 13 opioids morphine, oxycodone, codeine, O-desmethyl tramadol, ethylmorphine, tramadol, pethidine, ketobemidone, buprenorphine, fentanyl, cyclopropylfentanyl, etonitazepyne, and methadone were extracted from oral fluid using electromembrane extraction based on conductive vials prior to analysis with ultra-high performance liquid chromatography–tandem mass spectrometry. Oral fluid was collected using Quantisal collection kits. By applying voltage, target analytes were extracted from oral fluid samples diluted with 0.1% formic acid, across a liquid membrane and into a 300 μL 0.1% (v/v) formic acid solution. The liquid membrane comprised 8 μL membrane solvent immobilized in the pores of a flat porous polypropylene membrane. The membrane solvent was a mixture of 6-methylcoumarin, thymol, and 2-nitrophenyloctyl ether. The composition of the membrane solvent was found to be the most important parameter to achieve simultaneous extraction of all target opioids, which had predicted log P values in the range from 0.7 to 5.0. The method was validated in accordance to the guidelines by the European Medical Agency with satisfactory results. Intra- and inter-day precision and bias were within guideline limits of ± 15% for 12 of 13 compounds. Extraction recoveries ranged from 39 to 104% (CV ≤ 23%). Internal standard normalized matrix effects were in the range from 88 to 103% (CV ≤ 5%). Quantitative results of authentic oral fluid samples were in accordance with a routine screening method, and external quality control samples for both hydrophilic and lipophilic compounds were within acceptable limits.

OriginalsprogEngelsk
TidsskriftAnalytical and Bioanalytical Chemistry
Vol/bind415
Sider (fra-til)5323–5335
ISSN1618-2642
DOI
StatusUdgivet - 2023

Bibliografisk note

Publisher Copyright:
© 2023, The Author(s).

ID: 359646720