Bootstrapping Noncausal Autoregressions: With Applications to Explosive Bubble Modeling
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Standard
Bootstrapping Noncausal Autoregressions : With Applications to Explosive Bubble Modeling. / Cavaliere, Giuseppe; Nielsen, Heino Bohn; Rahbek, Anders.
I: Journal of Business and Economic Statistics, Bind 38, Nr. 1, 2020, s. 55-67.Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Harvard
APA
Vancouver
Author
Bibtex
}
RIS
TY - JOUR
T1 - Bootstrapping Noncausal Autoregressions
T2 - With Applications to Explosive Bubble Modeling
AU - Cavaliere, Giuseppe
AU - Nielsen, Heino Bohn
AU - Rahbek, Anders
PY - 2020
Y1 - 2020
N2 - In this article, we develop new bootstrap-based inference for noncausal autoregressions with heavy-tailed innovations. This class of models is widely used for modeling bubbles and explosive dynamics in economic and financial time series. In the noncausal, heavy-tail framework, a major drawback of asymptotic inference is that it is not feasible in practice as the relevant limiting distributions depend crucially on the (unknown) decay rate of the tails of the distribution of the innovations. In addition, even in the unrealistic case where the tail behavior is known, asymptotic inference may suffer from small-sample issues. To overcome these difficulties, we propose bootstrap inference procedures using parameter estimates obtained with the null hypothesis imposed (the so-called restricted bootstrap). We discuss three different choices of bootstrap innovations: wild bootstrap, based on Rademacher errors; permutation bootstrap; a combination of the two (“permutation wild bootstrap”). Crucially, implementation of these bootstraps do not require any a priori knowledge about the distribution of the innovations, such as the tail index or the convergence rates of the estimators. We establish sufficient conditions ensuring that, under the null hypothesis, the bootstrap statistics estimate consistently particular conditionaldistributions of the original statistics. In particular, we show that validity of the permutation bootstrap holds without any restrictions on the distribution of the innovations, while the permutation wild and the standard wild bootstraps require further assumptions such as symmetry of the innovation distribution. Extensive Monte Carlo simulations show that the finite sample performance of the proposed bootstrap tests is exceptionally good, both in terms of size and of empirical rejection probabilities under the alternative hypothesis. We conclude by applying the proposed bootstrap inference to Bitcoin/USD exchange rates and to crude oil price data. We find that indeed noncausal models with heavy-tailed innovations are able to fit the data, also in periods of bubble dynamics. Supplementary materials for this article are available online.
AB - In this article, we develop new bootstrap-based inference for noncausal autoregressions with heavy-tailed innovations. This class of models is widely used for modeling bubbles and explosive dynamics in economic and financial time series. In the noncausal, heavy-tail framework, a major drawback of asymptotic inference is that it is not feasible in practice as the relevant limiting distributions depend crucially on the (unknown) decay rate of the tails of the distribution of the innovations. In addition, even in the unrealistic case where the tail behavior is known, asymptotic inference may suffer from small-sample issues. To overcome these difficulties, we propose bootstrap inference procedures using parameter estimates obtained with the null hypothesis imposed (the so-called restricted bootstrap). We discuss three different choices of bootstrap innovations: wild bootstrap, based on Rademacher errors; permutation bootstrap; a combination of the two (“permutation wild bootstrap”). Crucially, implementation of these bootstraps do not require any a priori knowledge about the distribution of the innovations, such as the tail index or the convergence rates of the estimators. We establish sufficient conditions ensuring that, under the null hypothesis, the bootstrap statistics estimate consistently particular conditionaldistributions of the original statistics. In particular, we show that validity of the permutation bootstrap holds without any restrictions on the distribution of the innovations, while the permutation wild and the standard wild bootstraps require further assumptions such as symmetry of the innovation distribution. Extensive Monte Carlo simulations show that the finite sample performance of the proposed bootstrap tests is exceptionally good, both in terms of size and of empirical rejection probabilities under the alternative hypothesis. We conclude by applying the proposed bootstrap inference to Bitcoin/USD exchange rates and to crude oil price data. We find that indeed noncausal models with heavy-tailed innovations are able to fit the data, also in periods of bubble dynamics. Supplementary materials for this article are available online.
KW - Faculty of Social Sciences
KW - Bootstrap
KW - Bubble dynamics
KW - Heavy tails
KW - Noncausal autoregressions
U2 - 10.1080/07350015.2018.1448830
DO - 10.1080/07350015.2018.1448830
M3 - Journal article
VL - 38
SP - 55
EP - 67
JO - Journal of Business and Economic Statistics
JF - Journal of Business and Economic Statistics
SN - 0735-0015
IS - 1
ER -
ID: 199638902