Agreement between wireless and standard measurements of vital signs in acute exacerbation of chronic obstructive pulmonary disease: a clinical validation study

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Objective.Wireless sensors for continuous monitoring of vital signs have potential to improve patient care by earlier detection of deterioration in general ward patients. We aimed to assess agreement between wireless and standard (wired) monitoring devices in patients hospitalized with acute exacerbation of chronic obstructive pulmonary disease (AECOPD).Approach.Paired measurements of vital signs were recorded with 15 min intervals for two hours. The primary outcome was agreement between wireless and standard monitor measurements using the Bland and Altman method to calculate bias with 95% limits of agreement (LoA). We considered LoA of less than ±5 beats min-1(bpm) acceptable for heart rate (HR), whereas agreement of peripheral oxygen saturation (SpO2), respiratory rate (RR), and blood pressure (BP) were acceptable if within ±3%-points, ±3 breaths min-1(brpm), and ±10 mmHg, respectively.Main results.180 sample-pairs of vital signs from 20 with AECOPD patients were recorded for comparison. The wireless versus standard monitor bias was 0.03 (LoA -3.2 to 3.3) bpm for HR measurements, 1.4% (LoA -0.7% to 3.6%) for SpO2, -7.8 (LoA -22.3 to 6.8) mmHg for systolic BP and -6.2 (LoA -16.8 to 4.5) mmHg for diastolic BP. The wireless versus standard monitor bias for RR measurements was 0.75 (LoA -6.1 to 7.6) brpm.Significance.Commercially available wireless monitors could accurately measure HR in patients admitted with AECOPD compared to standard wired monitoring. Agreement for SpO2were borderline acceptable while agreement for RR and BP should be interpreted with caution.

OriginalsprogEngelsk
Artikelnummer055006
TidsskriftPhysiological Measurement
Vol/bind42
Udgave nummer5
Antal sider12
ISSN0967-3334
DOI
StatusUdgivet - 2021

Bibliografisk note

Publisher Copyright:
© 2021 Institute of Physics and Engineering in Medicine.

ID: 273645959