40Ar/39Ar age evidence for an impact-generated hydrothermal system in the Devonian Siljan crater, Sweden

Publikation: Bidrag til bog/antologi/rapportBidrag til bog/antologiForskningfagfællebedømt

Crater-forming events are generally followed by the development of hydrothermal systems due to the rapid heating of the target rock. Such hydrothermal systems are a feature of nearly all large terrestrial impact structures. For the Siljan impact structure in Sweden, there is evidence for such a fossil hydrothermal system, possibly triggered by the impact event ca. 380 Ma. To investigate the thermal regime of the near-surface hydrothermal activity of the Siljan crater, biotite and amphibole grains extracted from samples collected in a transect across the high-pressure regime recorded by the central uplift, as well as from distal localities outside the central uplift of the crater, were dated using the 40Ar/39Ar laser step-heating technique. Our results show that biotite from inside the central uplift, which was strongly altered to chlorite by low-temperature (200-340°C) hydrothermal reactions, yields strongly disturbed age spectra. The first and second (low laser power) step ages range from ca. 1300 to 190 Ma. In contrast, biotite from outside the central uplift and amphibole, irrespective of location inside or outside of the central uplift, are much less altered, which is reflected in less disturbed, near-flat age spectra. This result indicates that the hydrothermal temperatures inside the central uplift were >200°C, sufficient to disturb the K-Ar system of biotite during its chloritization, but too low to affect the amphibole (closure temperature of 480-580°C). In contrast, the temperature of the hydrothermal system outside of the central uplift was <200°C, as no significant reset of the K-Ar system can be observed in either biotite or amphibole. Our results are consistent with estimated trapping temperatures from fluid inclusion studies, which show a decrease from 327-342°C within the central uplift to 40-225°C toward outside the central uplift. We conclude that the near-surface hydrothermal system in the Siljan impact structure was an impact-triggered system. This system was strongly active, with its highest temperature inside the central uplift and decreasing rapidly toward the outlying part of the crater.

OriginalsprogEngelsk
TitelLarge Meteorite Impacts and Planetary Evolution VI
RedaktørerWolf Uwe Reimold, Christian Koeberl
ForlagThe Geological Society of America
Publikationsdato2021
Sider569-583
Kapitel26
ISBN (Elektronisk)9780813795508
DOI
StatusUdgivet - 2021
NavnGeological Society of America. Special Papers
Vol/bind550
ISSN0072-1077

Bibliografisk note

Funding Information:
Daniel Wielandt is gratefully thanked for assistance in preparing the samples for 40Ar/39Ar dating. Detailed reviews by F. Jourdan, M. Schmieder, and editor W.U. Reimold are gratefully acknowledged. The Quadlab is funded by the Villum Foundation. Sanna Holm-Alwmark is thanked for providing the sample material. The irradiation of the samples was funded by Kung-liga Fysiografiska Sällskapet i Lund (M KGL 171115).

Publisher Copyright:
© 2021 The Geological Society of America.

ID: 307009226