Katarina Madunic

Katarina Madunic

Postdoc

Glycosylation is an essential cellular process that involves the covalent attachment of glycans (carbohydrates/sugars) to proteins; glycans play important roles in maintaining normal cellular functions and dysregulation of processes related to protein glycosylations are known to cause various diseases, e.g. cancer and developmental disorders. Halim Group is interested in the biosynthesis, regulation and biochemistry of O-linked glycosylations with a special focus on protein O-mannosylations (see our OA article in Cell). We use a combination of methods, including advanced mass spectrometry, to study structures, map site-specific locations and quantify changes of protein O-mannosylations on a proteome-wide scale. In addition, we use CRISPR/Cas9 gene editing for KO/KI of glycogenes in our efforts to study and understand enzymatic pathways involved in protein O-mannosylation. 

 

Glycans decorate most proteins and cover all our cell membranes, yet our understanding of how glycans influence the lives of cells and organisms is limited. In Wandall Group we use gene editing, organotypic tissue models, and sophisticated mass spectrometry to decipher glycan functions. The genetically engineered cells and organotypic tissue model have provided evidence of the importance of glycans in tissue differentiation, cancer, and host-pathogen interactions. We now use organotypic tissue models for broad discovery and dissection of the specific structure-function relationships by which glycans drive normal epithelial formation, transformation and interaction with viruses and the microbiome.

We aim to exploit this knowledge for new and targeted treatments for inflammation, cancer, tissue regeneration, and the development of novel viral vaccine strategies.

ID: 315132745