Genetablering af skov på stormfalddrejere ved naturlig foryngelse

Brunner, Andreas; Petersen, Flemming Rune

Publication date:
2005

Document version
Også kaldet Forlagets PDF

Citation for published version (APA):
Genetablering af skov på stormfalds-arealer ved naturlig foryngelse

Andreas Brunner og Flemming Rune

Arbejdsrapport Skov & Landskab nr. 11-2005
Indhold

1. Sammenfatning1
2. Baggrund2
3. Eksisterende viden2
4. Forsøgets formål4
5. Forsøget6
 5.1 Forsøgsdesign6
 5.1.1 Plantede kulturer7
 5.2 Lokaliteter8
 5.2.1 Frederikshåb Plantage ..12
 5.2.2 Lovrup Skov ...15
 5.2.3 Stursbøl Hegn ..18
 5.3 Forsøgsanlæg22
 5.3.1 Afsetning og markering af parcellerne ...22
 5.3.2 Rydning ...23
 5.3.3 Hegning25
 5.3.4 Plantning25
6. Metoder27
 6.1 Frøfald27
 6.2 Naturlig foryngelse28
 6.2.1 Temporære stikprøveflader ...29
 6.2.2 Permanente stikprøveflader ..29
 6.3 Plantede kulturer32
 6.4 Fotoregistering32
 6.5 Statistiske metoder32
7. Resultater33
 7.1 Frøfald33
 7.2 Naturlig foryngelse36
 7.2.1 Tilstand fire år efter stormfalde t ..37
 7.2.2 Etablering og vækst efter stormfaldet ...46
 7.2.3 Effekter af forsøgsfaktorerne ..49
 7.2.4 Effekter af andre vækstfaktorer ..52
 7.3 Plantede kulturer55
8. Bundfloraens udvikling på stormfaldsarealer ..58
 8.1 Introduktion58
 8.2 Metoder58
 8.3 Resultater59
 8.4 Diskussion61
 8.5 Konklusioner og perspektivering ...62
1. Sammenfatning
Naturlig foryngelse som metode til genkultivering efter fladefald har næsten ikke været i brug i Danmark, men undersøgelser og erfaringer fra udlandet viser at metoden kan bruges de steder, hvor forudsætningerne er givet.

Den naturlige foryngelse i forsøget blev registreret intensivt de første fire år efter stormfaldet. Resultaterne er foreløbige på grund af den korte tidshorisont, men viser, at det er muligt at genetablere skov på stormfaldsarealer ved hjælp af naturlig foryngelse. Foryngelsen kan i vid udstrækning bygge på de planter, som var etableret før stormen. For etableringen af foryngelsen efter stormfaldet er afstanden til frøkilderne en af de vigtigste faktorer. Rydningen skal tage mest muligt hensyn til foryngelsen, hvis den skal bruges, fordi rydningen kan ødelægge en ellers komplet foryngelse. Vildtet kan have en betydelig effekt på træartssammensætningen i foryngelsen, men den viste sig kun svagt i forsøget. Bundvegetationen i hedeplantagerne ser ikke ud til at være en hindring for naturlig foryngelse på stormfaldsarealerne. Den naturlige foryngelse varierer meget i tæthed, rumlig fordeling og artssammensætning og kræver en aktiv indsats i situationer, hvor den er utilstrækkelig.
2. **Baggrund**

Den vanskelige økonomiske situation for skovdriften i Centraleuropa og konverteringen til naturnær skovdrift fører til en øget interesse også at benytte naturlig foryngelse til genkultivering af stormfaldsarealerne. Derudover kan det forventes, at naturlig foryngelse kan være med til at skabe mere stormresistente skove i fremtiden. Stormfaldet giver en mulighed for at konvertere skoven til en anden træartssammensætning, som er mere stormstabil og naturnær. Der kan potentielt spares kulturomkostninger ved at benytte naturlig foryngelse på de steder, hvor man kan forvente en tæt opvækst af de ønskede træarter af høj kvalitet.

Genkultiveringen af åbne arealer efter fladefald er en vanskelig opgave, fordi træerne er ubeskyttede mod klimaekstremer og udsat for forsumping, insektskader, mus og vildtbid. Selv om den traditionelle genkultiveringsmetode med rydning og maskinel gentilplantning efter jordbearbejdning er vel afprøvet og tager hensyn til de mange mulige risici, kan det ikke udelukkes, at metoden selv er med til at øge nogle af problemerne.

Erfaringerne med naturlig foryngelse på stormfaldsarealerne i Danmark er meget begrænsete og derfor blev metoden efter stormen i 1999 ikke anvendt. Vi iværksatte derfor i år 2000 et forskningsprojekt, som skal samle erfaringer med metoden, dels ved at indsamle og formidle eksisterende viden fra ind- og udlandet, dels ved at afprøve metoden i et forsøg.

3. **Eksisterende viden**

Denne afsnit giver et kort overblik over den eksisterende viden angående naturlig foryngelse på stormfaldsarealerne (se også Brunner 2002b for et lignende overblik).

Naturlig foryngelse er mere usikker end andre kulturmetoder. Usikkerheden skyldes de mange faktorer, som har indflydelse på foryngelsesprocessen (tabel 1). Som en følge af variationen i f.eks. frøtætheden og jordbundsforhold viser naturlig foryngelse typisk en større variation end planterne i træartssammensætning, tæthed, vækst og kvalitet. Store huller uden opvækst i den naturlige foryngelse kan man senere udedere med plantning.

Naturlig foryngelse, som allerede var etableret før stormen, kan overleve efter fladefald og bidrage til opvæksten. Den eksisterende opvækst ligner typisk den tidligere bevoksnings i sammenhæng af træarter. Efter stormfaldet etablerer der sig flere pionértræarter (f.eks. birk, røn, pil, el,
asp, skovfyr, lærk), men også andre arter fra tilbageværende frøkilder. Ask og ær er ikke typiske pionerer, men er dog på samme måde i stand til at producere store mængder frø hvert år og findes derfor hyppigt efter stormfald på de bedre lokaliteter.

Tabel 1. Faktorer ved etablering og vækst af naturlig foryngelse efter fladefald. (Styringsmulighederne er fremhævet med fed)

<table>
<thead>
<tr>
<th>Lokalitetsforhold:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klima</td>
</tr>
<tr>
<td>Humus</td>
</tr>
<tr>
<td>Jordbund (næringsstoffer, vand)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tidligere bevoksning:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Træarter</td>
</tr>
<tr>
<td>Alder</td>
</tr>
<tr>
<td>Tæthed</td>
</tr>
<tr>
<td>Bundflora</td>
</tr>
<tr>
<td>Humus</td>
</tr>
<tr>
<td>Frøforråd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resterende bevoksning:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beskyttelse</td>
</tr>
<tr>
<td>Frøkilde</td>
</tr>
<tr>
<td>Skader ved skovning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nabobevoksninger:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beskyttelse</td>
</tr>
<tr>
<td>Frøkilde</td>
</tr>
<tr>
<td>Skader ved skovning</td>
</tr>
<tr>
<td>Afstand (størrelse af åbent areal)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skovning af stormfældet træ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skader på opvæksten</td>
</tr>
<tr>
<td>Blotlægning af mineraljord</td>
</tr>
<tr>
<td>Jordkomprimering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bundvegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frost, tørke</td>
</tr>
<tr>
<td>Insekter</td>
</tr>
<tr>
<td>Vildtbid</td>
</tr>
<tr>
<td>Mus</td>
</tr>
</tbody>
</table>

Af de mange faktorer, som har indflydelse på etablering og vækst af naturforyngelse efter fladefald (tabel 1), er der kun enkelte som kan styres ved skovdyrkningen:

- Den resterende bevoksning udgør en vigtig frøkilde og beskytter opvæksten mod klimaeksstrukere. På arealer, som er længere væk end den gennemsnitlige frøspredningsafstand for de fleste vindspredte frø på 50 – 100 m, kan man ikke forvente en tilstrækkelig tæt naturlig foryngelse. Kun birk og pil kan sprede deres frø i tilstrækkelige mængder over endnu større distancer. Art, antal og placering af frøkilderne har derfor meget stor betydning.

- Konkurrerende vegetation kan især på de bedre lokaliteter være den afgørende hindring for naturforyngelsens etablering og opvækst. Afhængig af vegetationens udviklingshastighed efter stormen kan man derfor kun regne med tilstrækkelig gode frøspiringsbetingelser de første to til fem år efter blotlæggelsen.

Også musene kan være en væsentlig skadefaktor, og musepopulationens størrelse hænger ofte sammen med græssets dækning.

- Opvæksten var i begyndelsen ofte usynlig, men der fandtes som regel mere end forventet.
- Planterne var ofte ujævnt fordelt på arealer.
- Rødgran dominerede mange steder.

De første resultater fra vores forsøg er blevet publiceret (Brunner 2002c) og den eksisterende viden er sammenfattet og tilpasset danske forhold (Brunner 2001).

4. Forsøgets formål

Projektet og rapporten omfatter to dele (se også afsnit 13.1):

- Naturlig foryngelse på stormfalshaedene, som er hovedparten af rapporten, og skrevet af Andreas Brunner.
- Bundfloraens udvikling på stormfalshaedene (afsnit 8) er skrevet af Flemming Rune.
5. Forsøget

5.1 Forsøgsdesign
Vi etablerede et forsøg med en tidshorisont på flere årtier for at undersøge den naturlige foryngelse. Forsøget afprøver fire forskellige genkultiveringsmodeller efter fladefald i rødgranbevoksninger (figur 1):
1. Urørt, uden rydning, udelukkende naturlig foryngelse
2. Urørt efter rydning, udelukkende naturlig foryngelse
3. Naturlig opvækst bruges til en af de følgende kulturmodeller efter rydning:
 a – tilstrækkelig tæt opvækst suppleres med løvtræer
 b - forkultur til senere etablering af følsomme løvtræer
4. ”Normal” plantekultur efter rydning

Alle fire genkultiveringsmodeller afprøves indenfor og udenfor hegnet. Det giver sammenlagt 8 forskellige behandlinger, som bliver afprøvet på forsøgsparceller (figur 1). Forsøgsdesignet svarer til et split-plot design med hovedfaktorerne genkultiveringsmodel og hegning.

Genkultiveringsmodel 3 er endnu ikke realiseret, fordi foryngelsen udviklede sig langsommere end forventet og en supplering af den naturlige foryngelse forventes derfor først i løbet af de næste fem år at være nødvendig og mulig. Indtil da vil parcellerne med genkultiveringsmodel 2 og 3 være behandlet ens. Derfor er genkultiveringsmodellerne 1 – 3 reduceret til faktoren rydning i undersøgelserne af den naturlige foryngelse.

Figur 1. Parcelskema for en forsøgsblok.
Grå striber er bufferarealer mellem forsøgsparcellerne.
Forsøget bliver gentaget 4 gange i hver af de 3 lokaliteter. Det giver 12 forsøgsblokke i alt. I en af skovene (Frederikshåb Plantage) var det ikke muligt at etablere genkultiveringsmodel 1. Derfor er det samlede antal parceller 88. Parcellerne har en størrelse på cirka 0,5 ha og det samlede areal af forsøgsparcellerne er 42 ha (se også tabel 9).

5.1.1 Plantede kulturer

I forsøgets genkultiveringsmodel 4 (Normal plantekultur efter rydning) blev der afprøvet 3 plantningsmodeller med forskellige træarter:

1. Afprøvning af træarter, som også forventes i naturlig foryngelse: rødgran, birk, røn
2. Ammetræer af pionérarten birk
 Eventuel senere suppleret med plantning, såning og/eller selvforyngelse
3. Afprøvning af tolerante arter med produktionsformål og potentiale for senere konvertering: skovfyr og eg

Træarterne blev i alle plantningsmodeller blandet gruppevis med en gruppestørrelse på 8 x 8 m. I tabel 2 og figur 2 - figur 4 er opdelingen af parcellerne og placeringen af plantegrupperne beskrevet. Der blev plantet 3900 træer per ha for rødgran, skovfyr og eg og 3125 planter per ha for birk og røn.

<table>
<thead>
<tr>
<th>Art</th>
<th>Antal grupper per parcel</th>
<th>Antal grupper per blok</th>
<th>Areal per parcel (ha)</th>
<th>Antal planter per parcel</th>
<th>Antal planter per gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rødgran</td>
<td>12</td>
<td>24</td>
<td>0.08</td>
<td>3,900</td>
<td>25</td>
</tr>
<tr>
<td>Birk</td>
<td>6</td>
<td>12</td>
<td>0.04</td>
<td>3,125</td>
<td>20</td>
</tr>
<tr>
<td>Røn</td>
<td>6</td>
<td>12</td>
<td>0.04</td>
<td>3,125</td>
<td>20</td>
</tr>
<tr>
<td>Birk 2</td>
<td>16</td>
<td>32</td>
<td>0.10</td>
<td>3,125</td>
<td>20</td>
</tr>
<tr>
<td>Skovfyr</td>
<td>12</td>
<td>24</td>
<td>0.08</td>
<td>3,900</td>
<td>25</td>
</tr>
<tr>
<td>Vintereg</td>
<td>12</td>
<td>24</td>
<td>0.08</td>
<td>3,900</td>
<td>25</td>
</tr>
<tr>
<td>I alt</td>
<td>64</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figur 2. Plantningsskema for to 70 x 70 m parceller.
5.2 Lokaliteter

Dette afsnit giver et overblik over forsøgets placering og vækstbetingelserne i forsøget.

Lokaliteterne blev udvalgt, fordi de alle havde fladefald i rødgranbevoksninger på store arealer og derfor gav mulighed for at etablere 4 forsøgsblokke á cirka 4 ha. Udvælgelsen af lokaliteterne var også begrænset af rydningen i februar/marts 2000, fordi vi ønskede at undersøge den naturlige foryngelse før og efter rydningen. Rydningen var i februar 2000 allerede nået så langt, at der kun var få arealer at vælge imellem. Da projektet iværksattes, blev rydningen stoppet på de pågældende arealer, i enkelte tilfælde først ude i skoven af vores målemedarbejdere.
Tabel 3. Placering af forsøgsblokkene.

<table>
<thead>
<tr>
<th>Statsskov-district</th>
<th>Skov</th>
<th>Afdeling</th>
<th>Bloknummer</th>
<th>UTM* East SV-hjørne (m)</th>
<th>UTM* North SV-hjørne (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randbøl</td>
<td>Frederikshåb Plantage</td>
<td>92</td>
<td>F1</td>
<td>513.205</td>
<td>6.170.410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99</td>
<td>F2</td>
<td>512.803</td>
<td>6.169.746</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115</td>
<td>F3</td>
<td>513.718</td>
<td>6.169.676</td>
</tr>
<tr>
<td></td>
<td></td>
<td>778</td>
<td>F4</td>
<td>510.341</td>
<td>6.169.898</td>
</tr>
<tr>
<td>Lindet</td>
<td>Lovrup Skov</td>
<td>411, 410</td>
<td>L1</td>
<td>492.982</td>
<td>6.110.977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>185</td>
<td>L2</td>
<td>492.770</td>
<td>6.110.898</td>
</tr>
<tr>
<td></td>
<td></td>
<td>185</td>
<td>L3</td>
<td>492.930</td>
<td>6.110.557</td>
</tr>
<tr>
<td></td>
<td>Råbjerg Plantage</td>
<td>414, 415</td>
<td>L4</td>
<td>493.352</td>
<td>6.108.388</td>
</tr>
<tr>
<td>Haderslev</td>
<td>Stursbøl Hegn</td>
<td>787, 788, 789</td>
<td>S1</td>
<td>513.046</td>
<td>6.130.832</td>
</tr>
<tr>
<td></td>
<td></td>
<td>808, 809</td>
<td>S2</td>
<td>513.307</td>
<td>6.131.399</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800, 810, 811, 826, 827</td>
<td>S3</td>
<td>512.704</td>
<td>6.131.157</td>
</tr>
<tr>
<td></td>
<td></td>
<td>795, 796, 816, 817</td>
<td>S4</td>
<td>514.319</td>
<td>6.130.885</td>
</tr>
</tbody>
</table>

* UTM-zone EUREF89 Z32

Figur 5. Placering af forsøgsskovene.
Tabel 4. Stormfældede bevoksninger på forsøgsparcellerne.

<table>
<thead>
<tr>
<th>Blok</th>
<th>Parceller</th>
<th>Afdeling, litra</th>
<th>Træarter (Indblandings-%)</th>
<th>Alder 1999 (år)</th>
<th>Bemærkninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>2, 2h, 3, 3h</td>
<td>92a</td>
<td>RGR</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 3h, 4, 4h</td>
<td>92b</td>
<td>RGR</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3h, 4h</td>
<td>92d</td>
<td>RGR</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>Alle</td>
<td>99a</td>
<td>RGR</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>2, 2h</td>
<td>115a</td>
<td>RGR</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 3h, 4, 4h</td>
<td>115b</td>
<td>RGR</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>2h, 4</td>
<td>778a</td>
<td>RGR</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2, 3, 4h</td>
<td>778b</td>
<td>RGR</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3h</td>
<td>778c</td>
<td>RGR</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>1, 1h, 2, 2h, 3, 3h</td>
<td>411a</td>
<td>RGR</td>
<td>71</td>
<td>Lyst, huller i parcel 2 & 3</td>
</tr>
<tr>
<td></td>
<td>4, 4h</td>
<td>410b</td>
<td>RGR, SGR 80, LÆR 10, EG 10</td>
<td>71</td>
<td>Lyst</td>
</tr>
<tr>
<td>L2</td>
<td>Alle</td>
<td>185c</td>
<td>SGR</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>Alle</td>
<td>185b</td>
<td>RGR</td>
<td>59</td>
<td>L34h: gammel stormfalds- og typografiplage, lys bevoksning før stormfaldet</td>
</tr>
<tr>
<td>L4</td>
<td>1, 1h</td>
<td>185c</td>
<td>SGR</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 3h, 4, 4h</td>
<td>414a</td>
<td>RGR</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3h</td>
<td>414c</td>
<td>EG</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 1h, 2, 2h</td>
<td>415a</td>
<td>RGR</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 1h</td>
<td>415b</td>
<td>SGR</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>415e</td>
<td>RGR</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>3, 3h, 4, 4h</td>
<td>787a</td>
<td>RGR, DGR 60, ØGR 10</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>787b</td>
<td>ØGR</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 1h, 2, 2h</td>
<td>788a</td>
<td>RGR, LÆR 90, ØGR 10</td>
<td>58</td>
<td>LÆR gruppe (alder 19) i NV af parcel 2h</td>
</tr>
<tr>
<td></td>
<td>1, 1h</td>
<td>789a</td>
<td>RGR</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>3, 3h, 4, 4h</td>
<td>808a</td>
<td>RGR</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 1h, 2, 2h</td>
<td>809a</td>
<td>RGR, DGR 90, ØGR, SGR</td>
<td>62</td>
<td>Lyst</td>
</tr>
<tr>
<td>S3</td>
<td>1h</td>
<td>800a, 801a</td>
<td>RGR</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 1h, 2, 2h</td>
<td>810a</td>
<td>RGR, DGR 90, ØGR 10</td>
<td>67</td>
<td>Lyst</td>
</tr>
<tr>
<td></td>
<td>1, 2</td>
<td>810b</td>
<td>DGR, SKF 90</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>810c</td>
<td>RGR</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 1h, 2, 2h</td>
<td>810d</td>
<td>DGR, SKF 90</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 1h</td>
<td>811a</td>
<td>RGR</td>
<td>39</td>
<td>Enkelte SKF overstandere</td>
</tr>
<tr>
<td></td>
<td>3, 3h, 4, 4h</td>
<td>826a</td>
<td>RGR, DGR 60</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>826c</td>
<td>RGR</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3h, 4h</td>
<td>827a</td>
<td>RGR</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>1, 2, 3</td>
<td>795a</td>
<td>RGR</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>796b</td>
<td>RGR</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4, 4h</td>
<td>816a</td>
<td>RGR</td>
<td>44</td>
<td>Enkelte DGR</td>
</tr>
<tr>
<td></td>
<td>1, 1h, 2, 2h, 3, 3h</td>
<td>817a</td>
<td>RGR</td>
<td>47</td>
<td>Lyst, enkelte OMO, ØGR, SGR og DGR</td>
</tr>
</tbody>
</table>

Størrelsen af stormfaldsfladerne varierer mellem forsøgsblokkene (tabel 5, afsnit 13.3), men ligger med en undtagelse over 10 ha og dermed over en størrelse, hvor der kan forventes beskyttende effekter fra tilgrænsende bevoksninger. Alligevel står der en del bevoksninger tilbage i nærheden af forsøgsblokkene, som giver beskyttelse mod klimaekstremer eller fungerer som frøkilde. En vurdering af deres effekt på opvæksten i forsøgsparcellerne er meget afhængig af de enkelte faktorer. I afsnit 13.3 er der derfor kun indikeret en indflydelseszone på minimum 100 m omkring forsøgsblokkene (100 m fra de ydre blokgrenser) på skovkortene efter stormfaldet. 100 m svarer til 3 – 4 trælængder, som anses for den maksimale distance af beskyttende effekter fra skovbrynet. Samtidig er mængden af frø, som bliver spredt længere end 100 m fra frøkilden meget lille. Bevoksninger indenfor denne 100 m-buffer har en beskyttende effekt for dele af forsøgsblokkene eller kan fungere som frøkilde. Det skal bemærkes, at ikke alle bevoksninger, som er indikeret stående efter stormen på kortene, har nået en højde og alder, hvor beskyttelsen virker. Derudover har skovkortene en del fejl i afgræsningen af de stående bevoksninger. Luftbilleder fra 2002, som kan bruges til at afgrænse bevoksningerne mere præcist vil først blive tilgængelige efter projektets afslutning.

Tabel 5.

<table>
<thead>
<tr>
<th>Bloknummer</th>
<th>Areal af stormfaldsfladen (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>10</td>
</tr>
<tr>
<td>F2</td>
<td>5</td>
</tr>
<tr>
<td>F3</td>
<td>30</td>
</tr>
<tr>
<td>F4</td>
<td>10</td>
</tr>
<tr>
<td>L1</td>
<td>10</td>
</tr>
<tr>
<td>L2 & L3</td>
<td>>50</td>
</tr>
<tr>
<td>L4</td>
<td>15</td>
</tr>
<tr>
<td>S1</td>
<td>35</td>
</tr>
<tr>
<td>S2 & S3</td>
<td>>50</td>
</tr>
<tr>
<td>S4</td>
<td>>50</td>
</tr>
</tbody>
</table>

Klimadata for udvalgte stationer i nærheden af forsøgsblokkene (tabel 6) viser ingen forskel i middeltemperaturen og meget lidt variation i nedbørsmængderne (Lovrup S. > Stursbøl H. > Frederikshåb Pl., som svarer til den omvendte rækkefølge i afstanden fra Vesterhavet).

Tabel 6.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Billund Lufthavn (6104)</td>
<td>8 km nordvest for Frederikshåb Pl.</td>
<td>7,5</td>
<td>13,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brakker (23310)</td>
<td>15 km sydøst for Frederikshåb Pl.</td>
<td>7,5</td>
<td>13,5</td>
<td>781</td>
<td>335</td>
</tr>
<tr>
<td>Oksenvad (26050)</td>
<td>2 km øst for Stursbøl H.</td>
<td>857</td>
<td>357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skrydstrup (6110)</td>
<td>12 km sydøst for Stursbøl H., 26 km nordøst for Lovrup S.</td>
<td>811</td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrild (26170)</td>
<td>4 km øst for Lovrup S.</td>
<td>898</td>
<td>385</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2.1 Frederikshåb Plantage
Figur 7. Placering af de fire forsøgsblokke i Frederikshåb Plantage.

Figur 8. Blok F1 i Frederikshåb Plantage.
Figur 9. Blok F2 i Frederikshåb Plantage.

Figur 10. Blok F3 i Frederikshåb Plantage.
Figur 11. Blok F4 i Frederikshåb Plantage.

Tabel 7. Jordbundsbeskrivelse for forsøgsblokkene i Frederikshåb Plantage (Henrik Granat, Skov- og Naturstyrelsen).

<table>
<thead>
<tr>
<th>Blok</th>
<th>Profil-nummer</th>
<th>Jordtype</th>
<th>Lokalitets-type *</th>
<th>Tekstur</th>
<th>Udgangsmateriale</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>FRH-010</td>
<td>Lerblandet sandjord (100 cm) over sand og grus</td>
<td>33</td>
<td>55-60% grovsand, 20-30% finsand, 10-15% ler og silt</td>
<td>Flyvesand (15 cm) over morænesand (15-100 cm) over smeltevandssand og -grus</td>
</tr>
<tr>
<td>F2</td>
<td>FRH-011</td>
<td>Sandjord</td>
<td>22</td>
<td>60-70% grovsand, 25% finsand, 5-10% ler og silt</td>
<td>Smeltevandssand</td>
</tr>
<tr>
<td>F3</td>
<td>FRH-013</td>
<td>Lerblandet sandjord (100 cm) over grus og sand</td>
<td>33</td>
<td>40-60% grovsand, 30% finsand, 10-20% ler og silt</td>
<td>Morænesand over smeltevandssand og -sand</td>
</tr>
<tr>
<td>F4</td>
<td>FRH-009</td>
<td>Grovsandet jord</td>
<td>12</td>
<td>60-70% grovsand, 25-30% finsand, 10% ler og silt</td>
<td>Hedeslettesand og -grus</td>
</tr>
</tbody>
</table>

* efter metoden for forstlig lokalitetskortlægning (Sørensen & Dalsgaard 1997)

5.2.2 Lovrup Skov

Figur 12. Placering af de fire forsøgsblokke i Lovrup Skov.

Figur 13. Blok L1 i Lovrup Skov.

Figur 15. Blok L3 i Lovrup Skov.
Figur 16. Blok L4 i Råbjerg Plantage.

5.2.3 Stursbøl Hегn
Figur 17. Placering af de fire forsøgsblokke i Stursbøl Hegn.

Figur 18. Blok S1 i Stursbøl Hegn.
Figur 20. Blok S3 i Stursbøl Hegn.

<table>
<thead>
<tr>
<th>Blok</th>
<th>Jordbund</th>
</tr>
</thead>
</table>
| S1 | Parcel 4 og 4h: Lerblandet sandjord (5-15% ler)
Parcel 1, 2, 3: Lerblandet sandjord (5-15% ler), dybereliggende lerlag (80-160 cm u.t.)
Parcel 2h og 3h: Sandjord (2-5% ler), blegsand 30-60 cm u.t.
Parcel 1h: Sandjord (2-5% ler), blegsand 30-60 cm u.t., cementeret al-lag. |
| S2 | Kun tilgrænsende arealer kortlagt:
Sandjord (2-5% ler), blegsand 5-30 cm u.t.
Dele af parcel 1 og 2: Sandjord (2-5% ler), blegsand 30-60 cm u.t., cementeret al-lag. |
| S3 | Kun tilgrænsende arealer kortlagt:
Sandjord (2-5% ler), blegsand 5-30 cm u.t. |
| S4 | Parcel 2, 2h, 3, 3h, 4, 4h: Lerblandet sandjord (5-15% ler)
Vestlige dele af parcel 4 og 4h: Lerblandet sandjord (5-15% ler), dybereliggende lerlag (80-160 cm u.t.)
Parcel 1h: Sandjord (2-5% ler), blegsand 5-30 cm u.t., dybereliggende sandlag (80-160 cm u.t.) |

5.3 Forsøgsanlæg

5.3.1 Afætning og markering af parcellerne

Parcelhjørnerne er i skoven markeret permanent med et jernrør i jorden. Der blev sat hvide PVC plastikstænger (1,7 m længde) i jernrørene for at gøre punkterne mere synlige. Det skal bemærkes, at også fotopunkterne (se afsnit 6.4) er afmærket på samme måde. Fotopunkterne er ikke tegnet ind i kortene i figur 8 - figur 21.

Parcelnummereringen følger følgende skema:
Skov (F, L, S) – Blok (1 – 4) – Genkultiveringsmodel (1 – 4) – Hegn (h/-), f.eks. betyder F12h Frederikshåb Plantage, blok 1, genkultiveringsmodel 2, hegn.

<table>
<thead>
<tr>
<th>Blok</th>
<th>Antal parceler</th>
<th>Genkultiverings-</th>
<th>Parcel</th>
<th>Parcel-</th>
<th>Antal</th>
<th>Areal</th>
<th>Parceller med stikpøveflader</th>
<th>Antal stikpøveflader</th>
<th>Antal stikpøveflader i alt</th>
<th>Y-retning (grader)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>model</td>
<td>X (m)</td>
<td>Y (m)</td>
<td>(ha)</td>
<td></td>
<td>per parcel</td>
<td></td>
<td>i alt</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>65</td>
<td>70</td>
<td>0.455</td>
<td>6</td>
<td>2.73</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>70</td>
<td>70</td>
<td>0.490</td>
<td>6</td>
<td>2.94</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>45</td>
<td>95</td>
<td>0.428</td>
<td>4</td>
<td>1.71</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>60</td>
<td>90</td>
<td>0.540</td>
<td>3</td>
<td>1.62</td>
<td>2</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>70</td>
<td>70</td>
<td>0.490</td>
<td>2</td>
<td>0.98</td>
<td>2</td>
<td>16</td>
<td>32</td>
<td>129.6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>70</td>
<td>70</td>
<td>0.490</td>
<td>1</td>
<td>0.49</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>103.5</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>70</td>
<td>70</td>
<td>0.490</td>
<td>8</td>
<td>3.92</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>L2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>33</td>
<td>100</td>
<td>0.330</td>
<td>8</td>
<td>2.64</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>L3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>100</td>
<td>0.500</td>
<td>6</td>
<td>3.00</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>50</td>
<td>120</td>
<td>0.600</td>
<td>2</td>
<td>1.20</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>L4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>95</td>
<td>0.475</td>
<td>4</td>
<td>1.90</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>45</td>
<td>100</td>
<td>0.450</td>
<td>2</td>
<td>0.90</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>70</td>
<td>66</td>
<td>0.462</td>
<td>2</td>
<td>0.92</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>70</td>
<td>70</td>
<td>0.490</td>
<td>8</td>
<td>3.92</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>S2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>80</td>
<td>65</td>
<td>0.520</td>
<td>8</td>
<td>4.16</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>S3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>70</td>
<td>70</td>
<td>0.490</td>
<td>4</td>
<td>1.96</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>70</td>
<td>70</td>
<td>0.490</td>
<td>4</td>
<td>1.96</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>S4</td>
<td>2</td>
<td></td>
<td></td>
<td>70</td>
<td>80</td>
<td>0.560</td>
<td>2</td>
<td>1.12</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>70</td>
<td>70</td>
<td>0.490</td>
<td>4</td>
<td>1.96</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>70</td>
<td>83</td>
<td>0.581</td>
<td>2</td>
<td>1.16</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>l alt</td>
<td>16</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>41.61</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1032</td>
<td></td>
</tr>
</tbody>
</table>

5.3.2 Rydning

De stormfældede træer blev ryddet fra arealerne i løbet af foråret og sommeren 2000. Her blev følgende tekniker og maskiner brugt:
• Frederikshåb Plantage:
 Skovning: Blok F1 – F3 med Timberjack 1270 efter manuel friskæring, i blok F3 med hjælp fra en gravemskine, i blok F4 FMG Super Eva efter manuel friskæring.
 Udslæbning: Tømmer med klembanker, Rm-træ med kranvogn (Timberjack fra maskinstation).
• Stursbøl Hegn:
 Tidspunkt: april – maj 2000
 Skovning: Friskæring med motorsav og oparbejdning med skovningsmaskiner (Silvatec 896 med et Silvatec 445 aggregat (1-grebs-processor), i blok S1 med Silvatec 666 skovningsmaskine med Silvatec 555 aggregat (1-grebs-processor)).
 Udtransport: Uafkortet tømmer med Rottne SMV Rapid med klembanke, korttræ med Valmet udkørselsmaskine.
• Lovrup Skov (L1 – L3):
 Tidspunkt: juni 2000
 Råbjerg Plantage (L4):
 Tidspunkt: november – december 2000
 Skovning: Skovningsmaskine (Timberjack 1250 og andre) med manuel friskærer, uafkortet tømmer og 3 m flistræ.
 I parcel L41 blev alle træer som lå tværs over den vestlige parcelgrænse trukket ud af parcellen i stedet for at blive afkortet ved parcelgrænsen.

I ikke ryddede parceller blev liggende træer, som krydsede parcelgrænsen som regel afkortet ved parcelgrænsen.

I blokkene F1, F2 og F3 blev der ved et uheld i sommeren 2000 af en grusentreprenør gravet en del store huller med gravemaskine i forsøgsblokkene (4 styk i blok F1: 1 i parcel F13 ved prøveflade nr. 2, 1 i parcel F14h; 2 styk i blok F2: i parcel F22 ved siden af prøveflade nr. 6; 2 styk i
blok F3: i parcel F32 ved prøveflade nr. 4, i parcel F33 ved siden af prøveflade nr. 7). Hullerne blev fyldt i igen i løbet af efteråret 2000. Enkelte prøveflader blev annulleret eller flyttet på grund af hullerne (Nr. 2 i F13).

5.3.3 Hegning
Hegn blev sat op på følgende tidspunkter:
• Frederikshåb Plantage: september 2000
• Stursbøl Hegn: september – oktober 2000
• Lovrup Skov: oktober – december 2000

Flere gange i løbet af projektperioden blev der fundet vildt eller spor efter vildt i hegnene:
• Marts 2001: L1
• Juli 2002: F2, F4, S2 (genkultiveringsmodel 1 & 2), S4, L42h, L41h
• Juni 2003: S1, S4

5.3.4 Plantning
Parcellerne af genkultiveringsmodel 4 blev beplantet i foråret 2001. En lille gravemaskine (ren-degraver) blev brugt til at forberede plantepladserne. Maskinen skræbde morlaget af og blot-lagde mineraljorden punktvis på ca. 60 x 60 cm med en afstand på ca. 1,6 x 1,6 m. Derefter blev plantegruppernes midtpunkt markeret med hvide PVC-plastikstænger (85 cm længde). Plantningen blev foretaget manuelt. Planternes størrelse og proveniens fremgår af tabel 10.

Tabel 10. Plantestørrelser og proveniens

<table>
<thead>
<tr>
<th>Træart</th>
<th>Skov</th>
<th>Størrelser</th>
<th>Proveniens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rødgran (Picea abies)</td>
<td>Frederikshåb Plantage</td>
<td>2/2, 30 – 50 cm</td>
<td>Palsgaard, Gludsted afd. 43 & 44, A 2025</td>
</tr>
<tr>
<td></td>
<td>Lovrup Skov</td>
<td>2/1s, 20 – 40 cm</td>
<td>Sønderjylland, Lundbæk afd. 19a, A2192</td>
</tr>
<tr>
<td></td>
<td>Stursbøl Hegn</td>
<td>2/1, 15 – 30 cm</td>
<td>Sønderjylland, Lundbæk afd. 19a, A2192, F 470</td>
</tr>
<tr>
<td>Skovfyr (Pinus sylvestris)</td>
<td>Frederikshåb Plantage</td>
<td>2/1s, 20 – 40 cm</td>
<td>Kronborg, Gurrevang, FP 227, A2207</td>
</tr>
<tr>
<td></td>
<td>Lovrup Skov</td>
<td>2/1s, 15 – 30 cm</td>
<td>Palsgaard, Hastrup, A2808</td>
</tr>
<tr>
<td></td>
<td>Stursbøl Hegn</td>
<td>2/1, 20 – 40 cm</td>
<td>Palsgaard, Hastrup afd. 264c, A2776, F 586</td>
</tr>
<tr>
<td>Vinterereg (Quercus petraea)</td>
<td>Alle</td>
<td>3/0+, 50 – 80 cm</td>
<td>Stenholt Skov, Lb. Nr. 59032</td>
</tr>
<tr>
<td>Birk (Betula pendula)</td>
<td>Alle</td>
<td>1/1, 60 – 100 cm</td>
<td>Fyn, Sønderskovgård afd. 130b</td>
</tr>
<tr>
<td>Røn (Sorbus aucuparia)</td>
<td>Alle</td>
<td>1/1, 40 – 60 cm</td>
<td>Dyrelund Plantage</td>
</tr>
</tbody>
</table>

Der skulle kun plantes på forberedte plantepladser. Hvis der ikke var plantepladser nok til at rumme de 25 eller 20 planter per gruppe, så skulle der plantes et mindre antal, men mindst 20 eller 15 planter per gruppe. Birk og røn skulle bare plantes med 20 planter per gruppe efter følgende skema:
Plantningstidspunkterne i 2001 er sammenfattet i tabel 11. I parcel F24 blev cirka 40% af grupperne først plantet året efter (c. 13. maj 2002).

<table>
<thead>
<tr>
<th>Skov</th>
<th>Tidspunkt for jordbearbejdning</th>
<th>Tidspunkt for plantning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frederikshåb Plantage</td>
<td>30. april – 10. maj</td>
<td>30. april – 18. maj</td>
</tr>
<tr>
<td>Stursbøl Hegn</td>
<td>26. marts – 6. april</td>
<td>17. april – 27. maj</td>
</tr>
</tbody>
</table>

Ved afsætningen af plantegrupperne og plantningen i foråret 2001 blev der noteret følgende urejelmæssigheder:

Frederikshåb Plantage:
- F14 & F14h: En gruppe med birk mangler mod hegn
- F24 & delvis F24h: meget forstyret af mange spor; mange sten i jorden, derfor besværlig plantning
- F34: En gruppe med birk mangler i midten af blokken
- F44 & F44h: En gruppe med birk mangler mod syd
- Jorden meget hård. Lidt for dybe jordhuller og højliggende al-lag, derfor risiko for dårlig plantningsdybde
- Meget store egeplanter.
- Røn meget udsprunget.

Lovrup Skov
- L24 & L24h: den yderste række af grupper mod øst mangler.
- Problemer med gruslag, som ikke blev brudt under jordbearbejdningen og som gjorde plantningen besværlig.
- Store egeplanter.
- Røn og birk meget udsprunget.

Stursbøl Hegn
- Store egeplanter.
6. Metoder

6.1 Frøfald
Frøfaldet blev undersøgt i vinteren 2002/03 i to blokke i Frederikshåb Plantage (blok F1 og F2). De to blokke blev valgt, fordi begge to er omgivet af stående bevoksninger og dermed har frøkilder i kortest mulig afstand. I efteråret 2002 kunne en betydelig frøsætning observeres hos mange træarter i forskellige regioner af landet. Det viste sig først efter undersøgelsen blev sat i gang, at der kun var meget begrænset frø det år i Frederikshåb Plantage.

![Figur 23. Placering af frøfældene i blok F1. (0,0) er blokkens SV-hjørne.](image)

Et første forsøg på at fange frø på alle forsøgsparceller i vinteren 2000/01 mislykkedes, fordi frøfældene blev revet i stykker under stormene på de åbne arealer. Fælderne var konstrueret af en cykelfælg, der holdt en pose af sejldug, som blev holdt nede af en sten. Overfladen af sejlbugen var imidlertid for stort så stenene blev kastet ud eller sejldugen revet i stykker.

I 2002 blev frøfælderne bygget af en sort plastikspand (foderspand) med en diameter af åbningen på 34 cm og en højde på 27 cm. I spandens bund blev der lavet et antal huller, så regnvandet kunne sive ud. Spandene blev sat på plads ved hjælp af fire pløkker (20 – 30 cm) og en 4 kg mursten. I spandens åbning placerede vi et stykke glasfiber-fluenet (1,5 mm maskevidde), som holdt frøene tilbage. Nettet blev holdt på plads af et stykke hønsetråd (20 mm maskevidde), som placeredes over spanden og som samtidig hindrede f.eks. fugle i at fjerne frøene (figur 25).
Figur 24. Placering af frøfælderne i blok F2. (0,0) er blokkens SV-hjørne.

Figur 25. Frøfælde set fra oven.

6.2 Naturlig foryngelse
6.2.1 Temporære stikprøveflader

Et temporært stikprøvesystem blev etableret i foråret 2000 før rydningen på en del af parcellerne (genkultiveringsmodel 2 og 3 i Frederikshåb Plantage og Stursbøl Hegn) for at undersøge rydningens effekt på den naturlige foryngelse. Foryngelsen blev her registreret både før og efter rydningen.

På i alt 32 parceller blev der i marts og april 2000, inden skovningen begyndte, etableret 12 temporære prøveflader per parcel (kun 10 per parcel i blok F3), i alt 376 prøveflader. Prøvefladerne var som regel lagt ud i tre parallelle linier (20 - 25 m afstand) med cirka 15 m afstand mellem prøvefladerne. Afstanden varierede afhængig af, om det var muligt at placere prøveflader på de punkter. Mange steder var det ikke muligt at komme ned til jorden på grund af de mange væltede træer (figur 28). Det vurderes, at udvælgelsen af tilgængelige steder for placeringen af prøveflader ikke betyder en fejlrepræsentation af foryngelsen eller skaderne på dem under rydningen. De cirkulære prøveflader havde en størrelse på 10 m² i Stursbøl Hegn og 5 m² i Frederikshåb Plantage. Prøvefladernes midtpunkt var markeret med et søm i jorden og et spraymalingskryds på jorden. Prøvefladerne blev efter rydningen genfundet i juli 2000 ved hjælp af indmålingsprotokollerne og en magnetsøger.

På prøvefladerne registrerede vi naturlig foryngelse med antal per art og højden af den højeste plante per art. Bundvegetationen blev registreret med dækningsgraderne af græs, mos og urter. Før rydningen blev andelen af åben mineraljord registreret, efter rydningen andelen af dækspor og kvas.

6.2.2 Permanente stikprøveflader

6.2.2.1 Design og afsættning

Et system af permanente stikprøveflader blev etableret i efteråret 2000 på alle forsøgsparceller med genkultiveringsmodel 1 – 3 med i alt 1032 prøveflader (se tabel 9 for det precise antal per parcel). Prøvefladerne dækker cirka 1% af parcelarealet. Prøvefladerne blev placeret systematisk i et gitter med 16 m afstand mellem prøvefladernes midtpunkt. Der blev brugt tre forskellige modeller (figur 26 og figur 27) afhængig af parcellens størrelse.

Størrelsen af de cirkulære prøveflader svarer med 4 m² (1,13 m radius) til det forventede vækstrum per plante i en komplet naturlig foryngelse med 2500 planter per ha. Dermed kan det forventes, at i gennemsnit mindst en plante bliver registreret per prøveflade. Samtidig tillader en prøveflade af den størrelse, at man registrerer planterne uden selv at stå i prøvefladen og dermed forstyre objektet.

Figur 26. Placering af prøvefladerne i 70 x 70 m parceller.
Afstand mellem prøvefladerne: 16 m,
afstand fra den sydlige og vestlige parcelgrænse: 11 m.

Figur 27. Placering af prøvefladerne i 50 x 100 m parceller (til venstre) og 33 x 100 m parceller (til højre).
Afstand mellem prøvefladerne: 16 m,
afstand fra den sydlige og vestlige parcelgrænse: 9 m.
6.2.2.2 Registreringer

Figur 28. Registreringer i ikke ryddede parceller.

Naturlig foryngelse blev registreret med antal per art (delt op i kimplanter og over 1-årige) og højden af de to højeste planter per art (cm) målt i naturlig position lodret ned fra topknoppen.

Bundvegetation blev registreret med dækningsgraderne af græs, urter og mos. Mosserne betragtes her som et eget lag, så at den maksimale dækningsgrad kan være 200%. Dækningsgraderne blev skønnet i følgende trin: 1, 2, 3, 4, 5, 10, 15, 20, 30, ..., 100 % af prøvefladens areal. Den maksimale højde af bundvegetationen blev målt som den højeste del af planten, som var til stede ved måletidspunktet i efteråret. Ofte var det frøstandene af græsset. Enkelte arter blev kun registreret med deres navn, hvis de var dominerende i prøvefladen, dvs. hvis deres dækning var over 10% af prøvefladens areal.
I efteråret 2000 registrerede vi for alle prøveflader specielle vækstsubstrater i prøvefladen, dvs. andelen af sten, blottet mineraljord, rodkage, spor, ved, kroner eller kvas. I tilfælde af overhængende kroner registrerede vi også den maksimale højde af kronen i prøvefladen. Alle vedstykker i prøvefladen blev klassificeret (stammer, skiver, stød, rødder, bark, gammel ved, gammel stød) og målt med deres midtdiameter, længden i prøvefladen og højde over jorden (underside af vedstykket).

6.3 Plantede kulturer
Plantede kulturer i genkultiveringsmodel 4 blev kun målt i efteråret 2003. Her registrerede vi antal og højden af de to højeste træer per gruppe. Antallet af træer per gruppe er i nogle tilfælde kun et skøn, fordi det ikke var muligt at skelne mellem naturforyngelse og plantede individer af samme art tre år efter plantningen, specielt for rødgran, men også for røn og delvis birk

6.4 Fotoregistering
Hvert år blev alle parceller fotograferet fra SØ-hjørnet (blok F1, F2, F4, L1, L2, S1, S2 og S3) eller SV–hjørnet (blok F3, L3, L4 og S4). Billedet blev altid taget i den samme, fast markerede retning, som er et punkt 5 m fra hjørnepælen på diagonalen gennem parcellen (markeret med jernrør og hvid plastikstang i marken). En landmålerstok blev placeret på dette punkt og tre billeder taget med følgende brændvidde på zoomlinsen: 28 mm, mellem 28 og 50 mm, 50 mm. Tidspunktene for fotoregistreringerne var:
- 12. juli 2000 (kun i cirka halvdelen af parcellerne)
- 19. – 25. juni 2001
- 11. – 12. juli 2002
- 27. – 28. juni 2003

6.5 Statistiske metoder
Den statistiske analyse af de indsamlede data begrænsede sig for de fleste data til beregningen af deskriptive statistikker (middelværdier, median, minimum, maksimum) og deres grafiske præsentation. For at teste effekter af behandlingerne beregnede jeg variansanalyser med parcelmiddelværdierne for stamtal og maksimal højde per prøveflade.

7. Resultater
I projektpérioden undersøgte vi frøfaldet, udviklingen af den naturlige foryngelse og udviklingen af plantede kulturer.

7.1 Frøfald

I tabel 12 er den gennemsnitlige frøtæthed sammenfattet for tre grupper af frø. Af levende frø blev der i alt fanget 100.000 per ha i blok F1 og 450.000 per ha i blok F2, heraf hhv. 60 og 76% birk. Kun en mindre del af disse frø kan forventes at blive til træer. Alligevel viser tallene fra et år uden specielt høj frøproduktion et betydelig potentiale for frøspredning fra omgivende bevoksnings i disse hhv. 10 og 5 ha store stormfaldsarealer. Den større frømængde for såvel levende som døde frø i blok F2 er sandsynligvis en følge af arealens størrelse, som kun er halvden af arealets størrelse, som kun er halvden af arealets størrelse for såvel levende som døde frø i blok F1 ligger, og dermed den mindre afstand til frøkilderne (se skovkortene i afsnit 13.3 for forsøgsblokkens placering i forhold til frøkilderne).

Tabel 12. Gennemsnitlige frøtæthed (stk./m²) i vinteren 2002/2003 i Frederikshåb Plantage.

<table>
<thead>
<tr>
<th></th>
<th>Blok, afdeling</th>
<th>Levende frø nål</th>
<th>Døde frø nål</th>
<th>Birkefrø</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1, afd. 92</td>
<td>4</td>
<td>20</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>F2, afd. 99</td>
<td>11</td>
<td>83</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

Gennemsnitstallene skjuler en betydelig rumlig variation i frøtætheden. I figur 29 og figur 30 er frøtætheden per frøfælde tegnet ind i kortene, som viser fældernes placering. Døde nålefør blev fundet i større mængder i alle frøfælder i blok F2. I blok F1, hvor afstanden til frøkilderne syd og vest for blokken er længere, var døde nålefør ikke så hyppigt og i midten af det åbne areal manglede de næsten totalt. Levende frø var koncentreret i nærheden af frøkilderne og arealerne uden frø var i de ca. 3 ha store forsøgsblokke op til 1 ha store. Den rumlige fordeling af frøfaldet viser tydeligt, at det var mest østvendt, som i vinteren 2002/2003 var med til at spredte frøene i Frederikshåb Plantage.

Resultaterne er i overensstemmelse med litteraturen, som nævner maksimale spredningsdistancer for større mængder vindspredte frø på omkring 100 m. Fordelingen af frøkilderne på areale er derfor afgørende for den rumlige fordeling af frøtætheden på stormfaldsarealer. Åbne arealer af op til 5 - 6 ha kan uden problemer dække fra frøkilderne i skovkanten. Afhængigt af arealens geometri kan arealerne også være større. Bliver afstanden til frøkilder for stor, fordi arealerne er endnu større, må man regne med at dele af arealet ikke får tilstrækkelig med frø til at starte en naturlig foryngelse.
Figur 29. Rumlig fordeling af frø i vinteren 2002/2003 i afd. 92 (blok F1) i Frederikshåb Plantage (tallene giver frøtætheden i stk./m²).
Figur 30. Rumlig fordeling af frø i vinteren 2002/2003 i afd. 99 (blok F2) i Frederikshåb Plantage (tallene giver frøtætheden i stk./m²).

Figur 31. Tidsfordeling af frøfaldet.

7.2 Naturlig foryngelse

7.2.1 Tilstand fire år efter stormfaldet

7.2.1.1 Træarter

![Diagram](image)

Figur 32. Træartssammensætningen i den naturlige foryngelse i alle 3 skove.
Figur 33. Treartssammensætningen i den naturlige foryngelse i Frederikshåb Plantage 2003.
Andre træarter er ædelgran, lærk, skovfyr og hyld.
F12: 99.7% rødgran, F12h: 96.5% rødgran.

Figur 34. Treartssammensætningen i den naturlige foryngelse i Lovrup Skov 2003.
Andre træarter er lærk, asp, poppel og hyld.

7.2.1.2 Tæthed

Tætheden af den naturlige foryngelse i 2003 er stillet sammen i figur 36 for alle parceller. For hver parcel viser figuren den gennemsnitlige tæthed og ekstremerne for de enkelte prøveflader. Referencelinierne i figuren svarer til en gennemsnitlig plantekultur med 4000 træer/ha og en ung bevoksning efter foryngelsesfasen med 1000 træer/ha. I 10 ud af 64 parceller er tætheden under 1000 træer/ha og halvdelen af parcellerne har en tæthed over 4000 træer/ha.

Der blev fundet en betydelig variation i tæthed på alle rumlige niveauer. Gennemsnittet for parcellerne i Frederikshåb Plantage er højere end for Lovrup Skov og Stursbøl Hegn, som ligner hinanden meget. Men også imellem blokkene i samme skov kan tætheden variere meget, hvilket for eksempel ses ved at sammenligne blokkene F1 og F4. Endelig er forskellen mellem parcellerne stor. Denne forskel skyldes delvist den rumlige variation og dels den forsøgsbetingede manipulering af parcellerne. Ved at sammenligne parceller med og uden hegn kan der kun ses en meget svag tendens til en højere tæthed indenfor hegnen (se afsnit 7.2.3.2 for en mere detaljeret analyse). Spredningen i tætheden registreret på enkelte prøveflader viser en stor rumlig uensartethed indenfor de 0,5 ha store parceller. Denne rumlige variation bliver nærmere analyseret i næste afsnit.
F12: 60.000 ha, F12h: 27.188 /ha.

7.2.1.3 Rumlig fordeling

Som reference bruger vi et ubevokset areal på 30 m². Mindre huller i naturlig foryngelse skal normalt ikke suppleres og der er kun plads til 300 huller af den størrelse per ha. Den teoretiske sumfrekvensfordeling for en tilfældig rumlig fordeling af 1000 træer per ha har 5% af arealet med huller større end 30 m². Videre antages det, at 15% ubevoksede arealer >= 30 m² (cirkel i graferne) er acceptabelt i en naturlig foryngelse.

Sammen med den gennemsnitlige tæthed per parcel, som er givet i graferne, kan kurverne i figur 36 - figur 38 bruges til at vurdere den rumlige fordeling for alle parceller. Der findes eksempler for både høj gennemsnitlig tæthed med store andele ubevoksede arealer (F12) og for lav tæthed uden huller (S42, L33h, S41, S43h). Kombinationen af den gennemsnitlige tæthed og den rumlige fordeling giver derfor den bedste information. I den samlede vurdering har 44 parceller (69%) en tilstrækkelig rumlig fordeling af opvæksten, mens 20 parceller (31%) har for store ubevoksede arealer. Uacceptabelt store ubevoksede arealer fandtes i 2003 i parcellerne F12, F13, F22, F22h, blok F4, L33, blok S1, S23, S23h, S32, S33h og S43.
Antallet af prøveflader som blev brugt her for at estimere størrelsesfordelingen af ubevoksede arealer er med 12 - 18 minimalt. Det giver en vis usikkerhed af resultaterne, men tendenserne er i god overensstemmelse med andre indikatorer og visuelle indtryk af forsøgsparcellerne.

Figur 37. Størrelsesfordeling af ubevoksede arealer i Frederikshåb Plantage i 2003.

Den rumlige fordeling kan også undersøges ved at analysere andelen af tomme prøveflader per parcel (figur 40), selv om denne metode har sine begrænsninger. Kun tre ud af 64 parceller var helt uden tomme prøveflader i efteråret 2003. Udviklingen i andelen af tomme prøveflader fra 2000 til 2003 viser, at der kun i Lovrup Skov skete en markant nedgang, mens de andre to skove forblev mere eller mindre på samme niveau.
Figur 38. Størrelsesfordeling af ubevoksede arealer i Lovrup Skov i 2003.
Figur 40. Andelen af tomme prøveflader (4m²) per parcel i 2003.

7.2.1.4 Højde
Maksimalhøjden per prøveflade (4m²) i efteråret 2003 (Figur 41) giver en indikation for højden af 2500 jævnt fordelte højeste træer per ha. Referencelinierne i figuren svarer med 150 cm til træerne som er vokset over bidhøjde og dermed sikret og med 50 cm til synlige træer, som også svarer til den normale plantehøjde i kunstige kulturer. Der kan ses en lille forskel i den gennemsnitlige maksimalhøjde mellem skovene. I Lovrup Skov var maksimalhøjden i gennemsnit højere end i de andre to skove. Det skyldes den høje andel af røn i Lovrup Skov, som i løbet af projektperioden voksede meget hurtigere end alle andre træarter i forsøget. En undtagelse er blok L2, hvor røn mangler og derfor er gennemsnitshøjden meget lavere end i resten af parcellerne i Lovrup Skov.

Den gennemsnitlige maksimalhøjde per parcel varierer kun lidt mellem parcellerne. Forsøgsbehandlingerne (rydning og hegning) har heller ingen effekt på maksimalhøjden. En betydelig større variation, som er tegnet ind som spredning, ses mellem prøvefladerne indenfor parcellen. Denne variation undersøgte vi nærmere ved at beregne andelen af prøveflader, hvor maksimalhøjden i 2003 var over 50 eller 150 cm (figur 42). I Frederikshåb Plantage og Stursbøl Hegn var det højeste træ kun på cirka en fjerdedel af alle prøveflader større end 50 cm, hvorimod cirka halvdelen af alle prøveflader havde træer større end 50 cm og en femtedel træer over 150 cm i Lovrup Skov.

Figur 42. Andelen af prøveflader med maksimalhøjder over 50 eller 150 cm i 2003.
7.2.2 Etablering og vækst efter stormfaldet

Højdevæksten (figur 44) var betydelig bedre i Lovrup Skov end i de andre to skove. Det skyldes mest røn, som voksede meget hurtigere end alle andre træarter i forsøget og som findes i storttal i Lovrup Skov, men ikke i de andre to skove. Røn kan vokse i løbet af 1 – 2 år til over 1,5 m højde og er derefter ikke længere udsat for vildtbid.

![Figur 43. Tæthed af kimplanter i 2001.](image-url)
Figur 44. Udvikling i tæthed og maksimalhøjde for alle parceller (parcelmiddelværdier). I Frederikshåb Plantage har to parceller (F12 og F12h) en højere tæthed end 25.000 /ha og de er derfor ikke med i figuren.

Figur 46. Udvikling i træartssammensætningen for alle parceller (parcelmiddelværdier).

7.2.3 Effekter af forsøgsfaktorerne
I forsøget er kun to faktorer manipuleret: rydningen og vildtbid. Deres effekter på etablering og vækst undersøges i de følgende to afsnit.

7.2.3.1 Rydningen
Kun i Lovrup Skov og Stursbøl Hegn indeholder forsøget parceller med (genkultiveringsmodel 2 & 3) og uden rydning (genkultiveringsmodel 1) af de stormfældede træer. Variansanalysen for variablene tæthed og maksimalhøjde i 2003 (tabel 13) viste en effekt af rydningen kun for tætheden. Tætheden var signifikant mindre i ryddede parceller end i ikke ryddede parceller, hvilket tyder på, at en del af opvæksten døde under eller efter rydningen. Effekten af rydningen på tætheden viste sig allerede i 2000 og 2001 og var i begge år statistisk signifikant (p<0,1%). Det betyder, at den højere overlevelse i ikke ryddede parceller overvejende skyldes, at der ikke blev ryddet her. Det kunne også tænkes at den beskyttende virkning mod vildtbid og klimaekstremer (udtørring, vind) af de tilbageliggende stammer og kroner i ikke ryddede parceller spiller en rolle. Men vores observationer viser, at denne effekt er af mindre betydning.
Tabel 13. Resultater af variansanalysen for Stursbøl Hegn og Lovrup Skov i 2003 (N=48). ns: ikke signifikant, *: p<5%, **: p<1%, ***: p<0,1%.

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Tæthed</th>
<th>Maksimalhøjde (per 4 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signifikans</td>
<td>Effekt</td>
</tr>
<tr>
<td>Skov</td>
<td>***</td>
<td>L>S: 5159 /ha</td>
</tr>
<tr>
<td>Blok * skov</td>
<td>***</td>
<td>L3 < middel, S2</td>
</tr>
<tr>
<td></td>
<td>ns</td>
<td>0>1: 2951 /ha</td>
</tr>
<tr>
<td>Rydning</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Hegn</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Rydning * Hegn</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

For at undersøge rydningens effekt på foryngelsen nærmere, etablerede vi et system af stikprøveflader før rydningen i foråret 2000 i to skove og registrerede samme prøveflader efter rydningen i sommer 2000. I de enkelte parcelle blev tætheden reduceret til 6 – 86% af tætheden før rydningen (figur 47). I gennemsnit blev tætheden reduceret til 29% i Frederikshåb Plantage og til 56% af tætheden før storm i Stursbøl Hegn. Andelen af tomme prøveflader steg mere markant i Frederikshåb Plantage end i Stursbøl Hegn (figur 48). Rydningen har reduceret den eksisterende naturlige foryngelse stærkere i Frederikshåb Plantage end i Stursbøl Hegn.

Figur 47. Tætheden før og efter rydningen i Frederikshåb Plantage og Stursbøl Hegn. Tætheden i parcel F12 før rydningen var 395.000 /ha.

7.2.3.2 Vildtbid

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Tæthed</th>
<th>Maksimalhøjde (per 4 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signifikans</td>
<td>Effekt</td>
</tr>
<tr>
<td>Skov</td>
<td>***</td>
<td>L>F: 6557 /ha</td>
</tr>
<tr>
<td>Blod * skov</td>
<td>***</td>
<td>F1 > middel</td>
</tr>
<tr>
<td>Hegn</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

I nogle af hegnene var der periodelvis rådyr og i enkelte tilfælde var dyrene så længe indenfor de forholdsvis store hegn, at bidskaderne indenfor hegnet var større end udenfor (se afsnit 5.3.3 for dokumentationen af observerede dyr i hegnene).
7.2.4 Effekter af andre vækstfaktorer

7.2.4.1 Konkurrence med bundvegetationen

Figur 49. Udvikling af dækningsgrader af græs, mos og urter for alle parceller (parcelmiddelværdier).
Figur 50. Udvikling af bundvegetationens maksimalhøjde for alle parceler. Maksimalhøjden er gennemsnittet af maksimalhøjderne per prøveflade.

Arterne i bundvegetationen blev kun registreret, hvis en enkelt art dominerede prøvefladen (dvs. dækkede mere end 10%). De hyppigste arter var:

- Bølget bunke, som i 2003 blev registreret i 70% af alle prøveflader
- Gederams, specielt i Lovrup Skov og Frederikshåb Plantage
- Bregner
- Lyng
• Mosarter
Andre hyppige arter var gyvel, hindbær og brombær, krybende lærkespore, blåtop og lyngsnerre. En mere detaljeret beskrivelse af artssammensætningen i forsøget findes i afsnit 8.

For at undersøge konkurrencen mellem vedplanterne og bundvegetationen relaterede vi dækningsgrader og maksimalhøjden af bundvegetationen med tætheden (træer per ha) og maksimalhøjden af den naturlige foryngelse for hver prøveflade per skov. Vi fandt kun svage sammenhænge mellem de registrerede variabler af bundvegetationen og træerne. Det skyldes sandsynligvis, at såvel tætheden som maksimalhøjden af træerne i høj grad er præget af trær, som var etableret før stormfald, og derfor før bundvegetationen udviklede sig. Disse trær er mindre modtagelige overfor konkurrencen fra bundvegetationen. En observeret tendens til aftagende dækning af urterne med tiltagende tæthed af træerne kan derfor skyldes en dominans af trærne over urterne.

Det kan derfor konkluderes, at indenfor de første fire år har bundvegetationen kun pletvis udviklet sig til en hindring for naturlig foryngelse af træerne. På de fleste parceller var der fire år efter stormfaldet stadig tilstrækkelig blottet jord til etablering af kimplanter.

7.2.4.2 Vækstsubstrat

Tabel 15. Dækningsgrader (%) af forskellige substrattyper.
Middelværdi og median (i parentes) af alle prøveflader.

<table>
<thead>
<tr>
<th>Skov</th>
<th>Rydning</th>
<th>Antal prøveflader</th>
<th>Ved & kvas</th>
<th>Hængende trær</th>
<th>Mineraljord</th>
<th>Dækspor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frederikshåb</td>
<td>Ryddet</td>
<td>268</td>
<td>12 (4)</td>
<td>1 (0)</td>
<td>9 (1)</td>
<td>11 (0)</td>
</tr>
<tr>
<td>Lovrup Skov</td>
<td>ikke ryddet</td>
<td>124</td>
<td>7 (2)</td>
<td>36 (26)</td>
<td>6 (3)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Ryddet</td>
<td>256</td>
<td>13 (4)</td>
<td>1 (0)</td>
<td>4 (0)</td>
<td>14 (0)</td>
</tr>
<tr>
<td>Stursbøl Hegn</td>
<td>ikke ryddet</td>
<td>128</td>
<td>5 (0)</td>
<td>44 (32)</td>
<td>10 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Ryddet</td>
<td>256</td>
<td>9 (4)</td>
<td>1 (0)</td>
<td>5 (0)</td>
<td>12 (0)</td>
</tr>
</tbody>
</table>

fælde er mindre end 4000 træer/ha. Den samme relation viste sig allerede i efteråret 2000 (data ikke vist).

At andelen af arealet, som er dækket med ved, kvas eller sten, begrænser den maksimale tæthed per prøveflade er en naturlig følge af, at træer ikke kan vokse på disse substrater.

7.3 Plantede kulturer

De plantede træer i genkultiveringsmodel 4 blev kun registreret en gang efter tre vækstsæsoner i efteråret 2003. Figur 52 viser middelværdier for antal og maksimalhøjde for alle træarter og parceller.

Højdetilvæksten kom meget langsamt i gang for rødgran, skovfyr og eg. Derimod er birk og røn vokset betydelig hurtigere. I mange af birkegrupperne er de højeste træer omkring 3 m efter 3 år.

Hegningen har haft en statistisk høj signifikant effekt på højdetilvæksten og overlevelsen (variansanalyser, p<0,1%). Overlevelsen var signifikant mindre for alle arter udenfor hegnet og højdetilvæksten var signifikant mindre for birk og røn udenfor end indenfor hegnet.
Figur 51. Relation mellem dækning af forskellige substrattyper og foryngelse (enkeltobservationerne for 1032 prøveflader).
Figur 52. Antal og maksimalhøjde af plantede træer i 2003.
8. Bundfloraens udvikling på stormfaldsarealer

Flemming Rune

8.1 Indroduktion

Efter stormfald sker en voldsom opblomstring af urter og buske på stormfaldsarealer, fordi skovbunden pludselig lyse eksponeres, og fordi nedbørtilløb stiger, efter at en stor del af regnfaldet ikke længere fanges af trækronerne (over halvdelen af årsnedbøren). Nogle arter kommer fra arealens egen frøpulje, men langt de fleste indvandrer fra omkringliggende arealer. De fleste arter vil som regel kun have en kort levetid på arealaen og forsvinde eftersom det atter bliver dækket af skov, enten ved tilplantning eller ved naturlig tilgroning med træer, men det er klart, at de kulturtillæg, man foretager, vil kunne være afgørende for den fremtidige diversitet af skovbundsurerne.

Dette delprojekt har til formål at følge skovbundsfloraens udvikling i fire år efter stormfald i rødgran på forsøgsarealer, der dels er ryddet for væltede stammer, dels er efterladt helt urørte. Betydningen af vildets græsning er søgt klarlagt ved hegning af halvdelen af forsøgsarealerne. Delprojektet er tænkt som et 'baseline-projekt', der med fordel kan følges mange år frem i tiden, da et væsentligt overblik over stormfaldsfloraens udvikling antagelig først kan skaffes efter ti år, men allerede nu (efter fire år) gøres status over floraens sammensætning for at klarlægge eventuelle tendenser i udviklingen. Foryngelse af nåletræer er ikke registreret, da dette foretages i et andet delprojekt.

8.2 Metoder

Floraprøvefelterne er udlagt systematisk i forbindelse med foryngelsesprøvefelter i stormfaldsforsøget i Stursbøl Plantage. I afdeling 788, 809, 810 og 817, hvor der hvert sted er placeret forsøgsparceller med to forskellige behandlinger, urørt uden rydning og urørt efter rydning ("behandling 1 og 2"), er i hver af disse behandlinger udlagt 2 sæt floraprøvefelter, ét i den hegnede del af parcellen og ét i den uhægnede del af parcellen. Floraprøvefelterne er placeret akkurat i hver stormfaldsparcels midte, imellem de fire midterste af de 16 fornyelsesfelter.

Hvert sæt floraprøvefelter består af et stort 10x10 meter felt (markeret med et jernrør i hvert hjørne) og seks små 1x1 meter felter på række langs det store felts nordkant (markeret med en stribe jernrør i de sydlige hjørner).

For de små felter er samtlige registrerede arters dækningsgrad opgjort i enheder à 10 cm² (svarende til 1/1000 m²), i praksis som en procentangivelse for hver tiendedel m². Der er for hvert sæt floraprøvefelter beregnet en gennemsnitlig dækningsgrad for de seks kvadratmeterfelter, og i tabel 16 og tabel 17 præsenteres den samlede dækningsgrad for alle fire gentagelser, i alt 24 kvadratmeterfelter pr. værdi.

For det store felt er der udarbejdet en total artsliste, og artenes almindelighed er undersøgt numerisk ved en endnu upubliceret metode (relative closest species individual method). Denne metodes numeriske værdier, der kan opfattes som en slags 'importance values', præsenteres ikke
i nærværende rapport, men de arter fra den totale artsliste, som ikke er registreret ved dækningsgradsanalyseren, er angivet i tabel 18.

8.3 Resultater

Tabel 16. Indvandring af urter og buske efter stormfaldet 1999 i de ikke-ryddede forsøgsområder. Alle tal angiver % dækningsgrad (gennemsnit af 6x1 m²-prøvefelter i 4 forskellige områder, dvs. på 24 m²).

<table>
<thead>
<tr>
<th>IKKE-RYDDET FORSØGSOMRÅDE</th>
<th>Dækningsgrad % af arter</th>
<th>HEGNET</th>
<th>IKKE HEGNET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deschampsia flexuosa [Bølget Bunke]</td>
<td>23,80</td>
<td>38,78</td>
<td>48,13</td>
</tr>
<tr>
<td>Trientalis europaea [Skovstjerne]</td>
<td>0,89</td>
<td>2,33</td>
<td>0,15</td>
</tr>
<tr>
<td>Dryopteris diltilata [Bredbladet Mangeløv]</td>
<td>0,28</td>
<td>1,83</td>
<td>0,69</td>
</tr>
<tr>
<td>Vaccinium myrtillus [Blåbær]</td>
<td>0,12</td>
<td>0,30</td>
<td>0,34</td>
</tr>
<tr>
<td>Frangula alnus [Tørst]</td>
<td>0,10</td>
<td>0,06</td>
<td>0,03</td>
</tr>
<tr>
<td>Galium saxatile [Lyngh-Snerre]</td>
<td>0,09</td>
<td>0,50</td>
<td>0,52</td>
</tr>
<tr>
<td>Pteridium aquilinum [Ørnebregne]</td>
<td>0,05</td>
<td>0,26</td>
<td>8,28</td>
</tr>
<tr>
<td>Chamaener angustifolium [Gederams]</td>
<td>0,03</td>
<td>0,48</td>
<td>0,55</td>
</tr>
<tr>
<td>Molinia coerulea [Blåtop]</td>
<td>0,03</td>
<td>0,05</td>
<td>0,14</td>
</tr>
<tr>
<td>Luzula pilosa [Håret Frytle]</td>
<td>0,01</td>
<td>0,07</td>
<td>0,03</td>
</tr>
<tr>
<td>Quercus rubra [Rød-Eg]</td>
<td><0,01</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Senecio sylvaticus [Skov-Brandbæger]</td>
<td>0,05</td>
<td>0,26</td>
<td>6,28</td>
</tr>
<tr>
<td>Epilobium sp. [Dueurt]</td>
<td>0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sambucus nigra [Alm. Hyld]</td>
<td><0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorbus aucuparia [Alm. Røn]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactuca muralis [Skov-Salat]</td>
<td>0,02</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>Oxalis acetosella [Skovsyre]</td>
<td>0,02</td>
<td>0,11</td>
<td>0,23</td>
</tr>
<tr>
<td>Prunus serotina [Glansbladet Hæg]</td>
<td>0,01</td>
<td>0,03</td>
<td><0,01</td>
</tr>
<tr>
<td>Calluna vulgaris [Hedelyng]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex pilulifera [Pille-Star]</td>
<td>0,03</td>
<td>0,95</td>
<td>0,95</td>
</tr>
<tr>
<td>Melampyrum pratense [Alm. Kohvede]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubus idaeus [Hindbær]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betula sp. [Birk]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digitalis purpurea [Fingerbøl]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrostis tenuis [Alm. Hvene]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus petraea [Vinter-Eg]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En række forhold springer i øjnene, når de ryddede og ikke-ryddede forsøgsområder, og de hegnetede og ikke-hegnerede dele, sammenlignes. I det følgende refereres de mest markante foreløbige resultater i punktform:

1) Bølget Bunke får en vældig konkurrencefordel, når der kommer lys til skovbunden. Den var til stede i næsten alle kvadratmeterfelter sommeren efter stormfaldet, og allerede året efter

Tabel 17. Indvandring af urter og buske efter stormfaldet 1999 i de ryddede forsøgsområder4. Alle tal angiver % dækningsgrad (gennemsnit af 6x1 m² prøvefelter i 4 forskellige områder, dvs. på 24 m²).

<table>
<thead>
<tr>
<th>RYDDET FORSØGSOMRÅDE</th>
<th>HEGNET</th>
<th>IKKE HEGNET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deschampsia flexuosa [Bølget Bunke]</td>
<td>4,28</td>
<td>8,97</td>
</tr>
<tr>
<td>Luzula pilosa [Håret Frytle]</td>
<td>0,38</td>
<td>1,50</td>
</tr>
<tr>
<td>Trientalis europaea [Skovstjerne]</td>
<td>0,11</td>
<td>0,22</td>
</tr>
<tr>
<td>Dryopteris dilatata [Bredbladet Mangeløv]</td>
<td>0,15</td>
<td>0,79</td>
</tr>
<tr>
<td>Frangula alnus [Tørst]</td>
<td>0,09</td>
<td>0,31</td>
</tr>
<tr>
<td>Sorbus aucuparia [Alm. Røn]</td>
<td>0,09</td>
<td>0,24</td>
</tr>
<tr>
<td>Senecio vulgaris [Alm. Brandbæger]</td>
<td>0,02</td>
<td>1,28</td>
</tr>
<tr>
<td>Carex sp. [Star]</td>
<td>0,02</td>
<td>0,22</td>
</tr>
<tr>
<td>Molinia coerulea [Blåtop]</td>
<td>0,01</td>
<td>0,28</td>
</tr>
<tr>
<td>Oxalis acetosella [Skovsyre]</td>
<td>0,01</td>
<td>0,03</td>
</tr>
<tr>
<td>Calluna vulgaris [Hedelyng]</td>
<td><0,01</td>
<td>1,52</td>
</tr>
<tr>
<td>Rumex acetosella [Rødknæ]</td>
<td><0,01</td>
<td>0,05</td>
</tr>
<tr>
<td>Vaccinium myrtillus [Blåbær]</td>
<td><0,01</td>
<td><0,01</td>
</tr>
<tr>
<td>Chamion angustifolium [Gederams]</td>
<td>6,89</td>
<td>3,17</td>
</tr>
<tr>
<td>Pteridium aquilinum [Ørnebregne]</td>
<td>0,57</td>
<td>7,03</td>
</tr>
<tr>
<td>Galium saxatile [Lyng-Snerre]</td>
<td>0,30</td>
<td>0,16</td>
</tr>
<tr>
<td>Luzula sp. [Frytle]</td>
<td>0,19</td>
<td>0,03</td>
</tr>
<tr>
<td>Rubus idaeus [Hindbær]</td>
<td>0,14</td>
<td>0,38</td>
</tr>
<tr>
<td>Rubus fruticosus [Brombær]</td>
<td>0,13</td>
<td>0,06</td>
</tr>
<tr>
<td>Epilobium sp. [Dueurt]</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>Carex pilulifera [Pille-Star]</td>
<td>0,02</td>
<td>0,20</td>
</tr>
<tr>
<td>Sambucus nigra [Alm. Hyld]</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Atriplex sp. [Mælde]</td>
<td><0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Sambucus racemosa [Drue-Hyld]</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>Stellaria holostea [Stor Fladstjerne]</td>
<td>1,20</td>
<td>1,68</td>
</tr>
<tr>
<td>Quercus petrea [Vinter-Eg]</td>
<td>0,02</td>
<td>0,10</td>
</tr>
<tr>
<td>Senecio sylvaticus [Skov-Brandbæger]</td>
<td>0,21</td>
<td>0,10</td>
</tr>
<tr>
<td>Poacea sp. [Græs]</td>
<td>0,21</td>
<td>0,10</td>
</tr>
</tbody>
</table>

4) Lyng-Snerre vinder hurtigt frem de første år efter stormfaldet, men trænges så tilbage igen.
5) Antallet af arter udvikler sig hurtigere på de ryddede arealer end på de ikke-ryddede arealer. På de ryddede arealer ser vi fra 2000 til 2001 en stigning i antallet af på omkring 80 %, mens stigningen på de ikke-ryddede arealer kun er godt 35 %. Mange af disse tidlige kolonisatorer må dog erfaringsmæssigt ventes hurtigt at blive udkonkurreret af andre dominante arter.

Tabel 18. Ud over de i tabel 16 og tabel 17 nævnte arter blev i et 100 m²-prøvefelt i midten af hver parcel konstateret omkring 20 andre arter som kolonisatorer på de ryddede arealer. Mange af disse arter forekommer kun sporadisk, et enkelt år, før de udkonkurreres af Bølget Bunke og skygges bort af højere urter.

SUPPLERENDE ARTER TIL DÆKNINGSGRADS-ANALYSEN
2000:
Sonchus sp. [Svinemælk]; Lonicera periclymenum [Vild Kaprifolie]; Holcus lanatus [Fløjlsgræs]; Hypericum pulchrum [Smuk Perikon]; Chenopodium sp. [Gåsefod]; Stellaria media [Alm. Fuglegræs]; Cirsium sp. [Tidsel]; Cerastium fontanum [Alm. Hansetarm]; Dactylis glomerata [Alm. Hundegræs].

2001:
Taraxacum sp. [Mælkebette]; Poa annua [Enårig Rapgræs]; Holcus mollis [Krybende Hestegræs]; Holcus lanatus [Fløjlsgræs]; Hieracium sp. [Høgeurt].

2003:
Rumex sp. [Skæppe]; Sieglingia decumbens [Alm. Tandbælg]; Sarothamnus scoparius [Gyvel]; Galeopsis sp. [Hanekro]; Veronica sp. [Ærenpris].

8.4 Diskussion
De store ændringer i bundvegetationen, der er konstateret, er et trin på vejen til nye plantesamfund, styret af de lys-, fugt-, næringsforhold, som stormfaldsarealerne kan frembyde i de kommende år. Især i de første år efter stormfaldet sker udviklingen i artssammensætning særdeles hurtigt – på de 96 m², som dækningsgradsprøvefeltene udgør, etableres således omkring 10 nye arter årligt i de første 3 år efter stormfaldet.

Tilsyneladende har flere arter succes med at etablere sig på de ryddede arealer end på de ikke ryddede. Lysforholdene er her bedre, men samtidig slår varme- og tørkeperioder kraftigere igenem, så relativt flere nyetablerede arter forsvinder igen her end på de ikke-ryddede arealer. Lyng-Snerre er et eksempel på en art, der i perioder kan blive hemmet af varme og tørke på de ryddede arealer. Forkellene i artsantal mellem de to typer arealer er markant, men på længere sigt kan dette meget vel ændre sig.

De første år efter stormfaldet er bundvegetationen på de ikke-ryddede arealer hemmet en del af den meget store førnetilførsel, dels i form af nåledrys fra de liggende, døde træer, dels i form af smågrene. Når denne førnetilførsel tager af i intensiteten, vil de ikke-ryddede arealer have langt mere variable, mikroklimatiske forhold end de åbne, ryddede arealer – muligvis med en øget artsdiversitet til følge på trods af de ringere lysforhold.

Den rige eller nærmest fraværende virkning på bundfloraen af indhegning af en del af forsøgsparcellerne kan have flere forklaringer. Efter stormfaldet mangedobles den grønne fødemængde i skovbunden, og græsningstrykket på de individuelle, tilstedeværende urter og småbuske bliver

Den tiltagende dominans af Ørnebregne, Gederams og Hedelyng i nogle forsøgsfelter fremmes af de gunstige lysforhold på de åbne, ryddede lokaliteter. Det er ikke ud fra de foreløbige resultater muligt at afgøre, i hvor høj grad områderne vil blive domineret af disse tre arter (ud over Bølget Bunke) fremover, men det er sandsynligt at kommende års undersøgelser vil kunne bekræfte en stadig større dækningsgrad for alle tre arter.

Et af de mest interessante forhold at få afklaret i de kommende år, er hvordan artsdiversiteten i bundfloraen udvikler sig i de ryddede i forhold til de ikke-ryddede arealer. Dækningsgraden af Bølget Bunke og Hedelyng på de ryddede arealer kan frygtes at blive så høj, at nye arter vanskeligt kan etableres, herunder en ønsket naturlig foryngelse af skovtræer.

Tegninger D. Lid.

8.5 Konklusioner og perspektivering

Undersøgelserne af bundfloraens udvikling på stormfaldsarealerne i Stursbøl Plantage har alle-rerede nu givet os et vigtigt fingerpeg om den sandsynlige udvikling i årene fremover. Det er imidlertid i de kommende år, at de vigtigste erfaringer skal høstes, både hvad angår dominantsarters status og funktion på de åbne arealer, og hvad angår mulighederne for udvikling af en mere divers vegetationssammensætning på de ikke-ryddede arealer.

9. Konklusion

I projekterperioden etablerede vi et stort forsøg og fulgte den naturlige foryngelse intensivt i de første fire år efter stormfaldet. Forsøget er unikt, fordi det blev gentaget i tre skove med fire gentagelser i hvert skov. Skovdyrkningsforsøg anlægges sjældent med et så stort antal gentagelser og er derfor sjældent repræsentativt for en større helhed. De tolv forsøgsblokke i vores forsøg repræsenterer mange forskellige udgangssituationer og repræsenterer derfor med stor sandsynlighed den naturlige foryngelsesprocess på stormfaldsarealerne efter fladefald i rødgranbevoksninger i sønderjyske hedeplantager fuldt ud.

Foryngelsesprocessen er ikke afsluttet endnu. Derfor er det for tidligt at konkludere afsluttende, og mange resultater må betragtes som foreløbige. Alligevel viser resultaterne tendenser, som med stor sandsynlighed vil vise sig at være udviklingsretningen på forsøgsarealerne. Følgende resultater har betydning for en samlet vurdering af foryngelsesmetoden:

- Den maksimale spredningsdistance af vindspredte frø begrænser naturlig foryngelse til åbne arealer på maksimalt 5 – 6 ha. Afhængig af arealernes geometri, dvs. afstanden til frøkilderne, kan arealerne også være større.
- I forsøget etablerede sig nye pionértræer kun i et enkelt år (første fulde vækstseson efter rydningen) på arealet. Det er uafklaret om sjældne frøår eller andre begrænsninger er ansvarlige for dette mønster.
- Den naturlige foryngelse har en stor variation i tæthed og rumlig fordeling. I en tredjedel af parcellerne er tætheden fire år efter stormfaldet for lav med uacceptabelt store ubevoksede arealer.
- Artssammensætningen er præget af frøkilderne i de væltede bevoksninger. Ændringer i artssammensætningen i løbet af perioden skyldes dødelighed af fristede nåletræer og etablering af pionérarter (røn, birk, eg).
- Opvæksten vokser kun langsamt. Foryngelsen er derfor de første år under 50 cm og dermed næsten usynlig og ikke sikret mod vildtbid eller andre farer.
- Indenfor de første fire år har bundvegetationen kun pletvis udviklet sig til en hindring for naturlig foryngelse af træerne. På de fleste parceller var der stadig tilstrækkelig åben jord til etablering af kimplanter
- Rydningen reducerede den eksisterende foryngelse betydeligt. Men skaderne var meget forskellige i de to skove, hvor vi undersøgte effekten nærmere. Rydningen blev heller ikke udført med specielle hensyn til foryngelsen. Det kan derfor tænkes, at rydningen kan udføres meget mere skønt som end det var tilfældet på forsøgsarealerne.
- Hegningen viste mindre end nogen effekt på naturlig foryngelse, men en vis effekt på artssammensætningen af bundvegetationen kan ses.
turlig foryngelse på stormfaldsarealerne. Den naturlige foryngelse varierer meget i tæthed, rumlig fordeling og artssammensætning og kræver en aktiv indsats i situationer, hvor den er utilstrækkelig.

10. Forsøgets fremtid

En jordbearbejdning for at fremme frøspiringen i dele af forsøget (genkultiveringsmodel 3) var foreslået i projektkontrakten som mulighed for at supplere utilstrækkelig tætte foryngelser. Efter de foreløbige resultater kan denne metode ikke anbefales for forsøgsarealerne. For de første mangler for de fleste arealer frøkilder til et sigurt dækning af hele arealet. Men selv der hvor afstanden til frøkilderne er tilstrækkelig kort, skal en blottelægning af mineraljorden ske umiddelbart inden frøspredningen i et af de selvfølgelige frøår, som er vanskelige at forudsige. Mange af pionéarterne, som etablerer sig på åbne arealer, kræver ingen blottet mineraljord. Kun for birk og nåletræarterne kan en signifikant højere etablering forventes på mineraljord end på humus eller i græsset.

Blok F4 i Frederikshåb Plantage viste sig i registreringen i efteråret 2003 som næsten tomt for naturlig foryngelse og dækket af en tæt græsvegetation. Foreløbige mangler der også frøkilder i nærheden, så naturlig tilgroning vil tage meget lang tid. Sandsynligvis vil arealet på denne meget magre jord ved siden af Randbøl Hede først gå igennem en langvarig fase med græsvegetation, inden tilgroning kommer i gang. Det skal derfor overvejes at opgive forsøgsblokken.

Måleprogrammet i projektperioden var meget intensivt, hvilket var nødvendigt for at følge den meget dynamiske fase i begyndelsen af genetableringen. Registreringsintensiteten kan herafter sættes ned. Registreringerne skal følges op med 3 – 5 års mellemrum for at kunne analysere processerne og ikke bare beskrive resultaterne.

Selv om det ikke er ønskværdigt, så er det ikke usandsynligt, at et stormfald af den størrelse gentager sig i samme region eller naboregionerne med lignende naturlige forudsætninger. Erfaringsindsamlingen fra forsøgsarealerne er derfor en del af beredskabet til fremtidige genkultive-
11. Taksigelser

12. Litteratur

13. Bilag
13.1 Bilag 1: Projektkontrakt
Bilag 1 til Projektbeskrivelse

Forskningsprojekt
Genetablering efter fladefald i sønderjyske nåletræplantager ved hjælp af naturlig foryngelse

Ref.: ABR
31. marts 2000

1. Baggrund

Følgende kulturmøllers, som benytter naturlig foryngelse, er tænkelige:

1. Naturlig udvikling, unørt ("naturlig" succession)
2. Spontan foryngelse af ønskede træarter for fremtidige produktionsformål er tilstrækkelig tæt, lidt styring i form af udræsning nødvendig
3. Tilstrækkelig spontan foryngelse supplieres med plantede eller såede kultur på en del af arealet, f.eks. i huller i naturlig opvækst
4. Spontan foryngelse benyttes som forkultur (pionerskov, ammetsæder) for følsomme træarter
Efter stormfaldet i oktober 1967 blev i Danmark udlagt observationsarealer i stormfældet bøg, hvori man har fulgt biodiversitets udvikling gennem de følgende år, mens en selvsæt blandingsbevoksning af især birk, bøg og ær etablerede sig. Lignende forsøg er hidtil aldrig blevet etableret i stormfældet nåleskov i Danmark, og aldrig i et omfang så man kritisk kunne vurdere betydningen af forskellige frøkilder og mulighederne for foryngelsens etablering.

Eksisterende viden

En foreløbig systemanalyse af systemet ”naturlig foryngelse på åbne arealer efter stormfald” baseret på publiceret viden foreligger på FSL. Den skal udvikles videre i projektets forløb.

2. Formål

Projektet har to dele med i alt fire formål.

Del I: Videnindsamling og -formidling

A. Indsamling og formidling af eksisterende viden om naturlig foryngelse på åbne arealer efter stormfald

Del II: Forsog

B. Demonstration af variationen i naturlig foryngelse på åbne arealer efter stormfald

Hypotese:

Det komplekse sammenspil af mange faktorer i systemet ”naturlig foryngelse på åbne arealer efter stormfald” fører til en stor variation i f.eks. tæthed og artssammensætning af naturlig opvækst.
C. Udvikling og afprøvning af kulturmodeller som bygger videst muligt på naturlig foryngelse

Hypotese:
Naturlig foryngelse af nåletræarter og pionertræarter findes i tilstrækkelig mængde og kvalitet til at det kan bruges til genkultivering af stormfaldsarealer i sønderjyske nåletreplantager.

D. Demonstration af biodiversitetens udvikling efter stormfald i gran ved forskellig behandling af arealerne, vidtgæævningens betydning for denne og frukildernes betydning.

Hypotese:
Et uoplystet stormfald på nåletre areal med en langt større variation af økologiske nicher end et oprydet, ikke-gentilplantet areal. Førstnævnte vil både på kort og langt sigt udvikle en langt mere artsrig og naturnær.

3. Projektmål

Videnindsamling og -formidling

(projectformål A)
- Publikation af litteraturanalyse i DST, Skoven (se f.eks. artikel af A. Brunner i Skoven 2/00), FSL videnblade
- Ekskursion med praktikere til forsøg (anlagt af Universitet Freiburg) i Rheinland-Pfalz og Baden-Württemberg
- Foredrag i Danmark af udenlandske og danske forskere, som arbejder med naturlig succession (f.eks. Anette Schmidt-Schütz fra Universitet Freiburg, Reinhard Lässig fra WSL i Schweiz, Manfred Schöll fra Fachhochschule Weihenstephan, Anton Fischer fra Technische Universität München, mv.)

Forsøg
Der anlægges et langsigtet forsøg, som løbende vil producere resultater, med afsluttende resultater efter projektets løbetid. I projektets løbetid forventes følgende vigtige resultater:
- Variation i træartssammensætning og læthed af naturlig foryngelse på stormfaldsarealer, og årsager til variationen (projektformål B).
- Muligheder for udnyttelse af naturlig opvækst til genkultivering efter stormfald: Eksisterende foryngelse, overlevelse efter opryndning, foryngelse af pionertræarter, udvikling af konkurrenceflora, mv (projektformål C).
- Biodiversitet: Hypotesen kan testes indenfor projektets løbetid. Der forventes en mere enartet og tæt bundvegetation med stort andel græs i ryddede parcelser end i ikke ryddede (projektformål D).

Resultaterne publiceres senest efter 4 år i artikler i internationale og nationale videnskabelige tidsskrifter samt i "Skoven."
4. Metoder

Videnindsamling og -formidling
(projektformål A)
Literaturanalyse, sammenfatning, formidling ved hjælp af skriftlig publikation, ekskursion og foredrag.

Forsøg
(projektformål B, C og D)
Der anlægges et langsigtet forsøg på forskellige lokaliteter til iagttagelse af naturlig udvikling og til kulturforsøg baseret på naturlig fornyelse.

Materiale
1 samarbejde med Skov- og Naturstyrelsens skovdistrikter er følgende arealer med fladefald reserveret til forsøget:
- Stursbøl Høgn (Haderslev distrikt), 16 ha
- Lovrup Skov (Lindet distrikt), 16 ha
- Frederikshåb Plantage (Randbøl distrikt), 12 ha (ingen behandling 1)

Alle arealer ligger på hedejorde vest for israndslinien. Den geologiske jordartskartering viser for det meste af arealet smeltevandssand, men også flyvesand (dele af Frederikshåb Plantage). De væltebe bevoksninger var domineret af rødgran (delvis med sitkagran, douglasgran, og rødgran).

Metoder
Forsøget afprøver og sammenligner fire forskellige behandlinger. Forsøgsparceller med samme behandling gentages fire gange på samme lokalitet, men også på tre forskellige lokaliteter. Den store variation i sammensætningen af naturlig opvækst og det langsigtede forsøgsformål gør det nødvendig at følge store parceller (0,5 ha).

Forsøgsparceller af alle behandlinger og gentagelser bliver etableret indenfor og udenfor høg for at undersøge vildtets indflydelse på opvæksten.

Forsøgsparcellerne udsættes for følgende behandlinger:
1. Uden skovning, urør
 Tjener som reference for at undersøge udviklingen af opvæksten, bundvegetationen og dødt ved uden forstyrrelse ved udtag af træeffekter.

Kan desuden blive relevant som erfaring i fremtiden, f.eks. hvis træpriserne ikke dækker opbejningsomkostninger efter stormfald (f.eks. diskuteret i stormfaldsregioner i Sydøske Land for tiden).
2 - Skovning, derefter urørt
Tjener som reference for at undersøge udviklingen af opvæksten og bundvegetationen uden konkurrence fra supplerende kunstig foryngelse eller foranstaltninger, som fremmer naturlig foryngelse.

3 - Skovning, naturlig opvækst bruges til en af de følgende kulturmodeller:
 a - tilstrækkeligt tøt opvækst suppleres med løvtræer (eg, bøg)
 b - forkultur til senere etablering af følsomme løvtræarter

Behandlingen afprøver, om naturlig foryngelse kan bruges til genetablering efter fladefald i nåletræbevoksnign i sønderjyske plantager.

Tidligere forsøg på stormfaldsarealer i Tyskland har vist, at de første år er afgørende for, om naturlig foryngelse udvikles tilfredsstillende. Hvis foryngelsen er utilstrækkelig kan der ikke forventes yderligere foryngelse i lang tid, da græs (og eventuelt lyng) vil dække areal. Hvis udviklingen går den retning afsluttes forsøget. Forsøgene i Tyskland har også vist, at der var meget mer brugbar naturlig foryngelse på arealerne end forventet. Tætheden, treartsensammensætning og kvalitet vil være afgørende for hvilke kulturmodeller der bliver afprøvet på forsøgsparcellerne.

Afhængig af jordbundsstilstanden efter oprydningsn overvejes det efter et år, at yderligere blotlægge mineralbunden til fræspiring, f.eks. igennem rilleplejning på en del af arealen.

4 - Skovning, "traditionell" kultur
Behandlingen tjener som reference for at sammenligne behandling 3 med kulturmodeller, som ikke tager hensyn til naturlig opvækst på arealet. Udgangspunktet er, at der anlægges en plante egekultur efter rilleplejning. Kulturmodellen tilpasses lokalitets- og produktionsforhold i de enkelte skove, som deltager i forsøget. Det tilstræbes dog i videst muligt omfang at anvende samme kulturmodel på deltagende distrikter for at tillade sammenligning mellem lokaliteterne.
Det samlede areal per gentagelse, som indeholder alle behandlinger, er 4 ha. Med fire gentagelser er det samlede areal per lokalitet 16 ha ved anvendelse af alle behandlinger. Med hensyn til farten for angreb af Ips typographus og andre skadebiller fra ikke ryddede arealer udelades dog behandling 1 i Frederikshåb Plantage.

På tre forskellige lokaliteter anlægges fire gentagelser. Det samlede areal af forsøget er 44 ha.

Foryngelsen måles meget intensivt i de første par år efter stormfaldet. Det anses for at være meget vigtigt, fordi afgørende processer sker i den tidspersiode (f.eks. overlevelse af eksisterende foryngelser, sporing af ny foryngelse på åben mineraljord, udvikling af konkurrencesflora). Det store forsøgsareal kan ikke fuldstændig registreres. Der anvendes derfor en permanent stikprøvetaksering af foryngelsen i forsøget (behandling 1 – 3, i alt 32 ha) med måling af følgende parametre:
- træartssammensætning
- tæthed
- horisontal fordeling af opvækst og enkelte træarter
- vertikal struktur
- stammeform
- vitalitet og skader

Endvidere registreres signifikante faktorer for foryngelsens tilstand og udvikling, f.eks.:
- Tidligere bevoksning: træarter (hørkomst), tæthed (tydning), urtevegetation, humusform, træfrøforråd;
- Restoverede bevoksning: beskyttelse af træopvækst, træfrøkilder, skader på opvækst (ved senere stormfald);
- Nabobevoksninger: beskyttelse af opvækst, træfrøkilder, skader på opvækst (ved senere stormfald), afstand (størrelse af åbent areal), f.eks. med frøfældere;
- Skovning: skader på opvækst, jordbearbejdningseffekter, jordkomprimering;
- Vegetation;
- Lokalitetsforhold;
- Vildtbid;
- Museskader;
- Frost- og tørreskader;
- Insektskader.

Det forventes at variationen i foryngelsens tæthed og artssammensætning er stor og ikke alene kan forklares med forsegets behandlinger. Det er derfor nødvendigt at måle de afgørende faktorer og dermed koble behandlinger til faktorvirkninger.

Biodiversitet undersøges kun i behandling 1 og 2 i Lovrup Skov og Stursholm plantage. I hvert af de 32 stk. 0,5 ha forsøgs parceler anlægges et observationsfelt, antagelig 10x10 meter (mere end 10 meter fra forsøgsfeltets kant), hvori skovbunds arternes "artsslandingstæthed"
registreres med "mean intervening area method", der tidligere har været anvendt af FSL til registrering af skovbundsvegetation. I observationsfelterne registreres desuden naturforyngede og plantede vedplanter.

For hvert af de 32 stk. 0,5 ha forsøgsfelter udarbejdes en total artsliste for karplanter (dog med 10 meters sikerhedszone langs kant, dvs. i felter på ca. 50x50 meter = 0,25 ha).

Det forøges en dødstvedstaksering i de uoplystede forsøgsfelter, evt. med supplerende vurdering/udmåling af skyggeeffekt.

Det langsigtede forsøgsanlæg giver mulighed for opfølgning efter projektets løbetid. Efterfølgende registreringer forventes at ske med større interval og mindre intensitet end i projektets løbetid – og i øvrigt afhængigt af finansieringsmuligheder.

5. Aktivitets- og tidsplan

Forår/sommer 2000:	taksering af opvæksten før oprydningen, forsøgsanlæg
Sommer 2000:	taksering af flora og dødt ved
Sommer/efterår 2000:	videnindsamling og -formidling
Sommer 2002:	registrering af væstkstaktorer for opvæksten
Forår 2003:	eventuelt supplerende plantninger i behandling 3
Sommer 2003:	Taksering af flora og dødt ved
Efterår 2003:	taksering af opvæksten
Forår 2004:	resultatrapport publiceres

6. Projektansvarlig og projektdeltagere
Andreas Brunner, FSL: Projektleder, fornyelsesforsøg, videnindsamling
Flemming Rune, FSL: Flora og biodiversitet på urørt arealer

Forsøgsdesign til "Naturlig foryngelse på åbne arealer efter stormfald i gran på heden"
1 gentagelse med 4 ha

Behandlinger:
1 - Uden skovning, urørt
2 - Skovning, derefter urørt
3 - Skovning, naturlig opvækst (sandsynligvis rødgran/sitkagran og pionertræer) bruges til en af de følgende kulturmodeller:
 a - tilstrækkelig tæt opvækst suppleres med løtværer (eg, bag; store planter og/eller såning)
 b - forkultur til senere etablering af følsomme løtværter
4 - Skovning, "traditionel" kultur
Arealer til forsøg "Naturlig fornyelse på åbne arealer efter stormfald i gran på heden"

- Frederikshåbs Plantage (Randbøl distrikt), 12 ha:
 + 92, + 99, + 115, + østlige del af 778

- Stursbøl Hegn (Haderslev distrikt), 16 ha:
 + 787a, 788a (789a, 773b), + 808a, 809a, + 810, 827, 825, + 817a

- Lovrup Skov (Lindet distrikt), 16 ha:
 + 410b & 411 a, + 185b, + 185c, + 185d
13.2 Bilag 2: Aftaler med værtsdistrikterne
Aftale
mellem Randbøl Statsskovdistrikt og
Center for Skov, Landskab og Planlægning, KVL.

om forsøg nr. 1513, "Genetablering af skov på stormfaldsarealer ved naturlig foryngelse" i Frederikshåb Plantage.

Forsøget forventes at fortælle mindst til 2019. Det forventes at foryngelsesprocessen er afsluttet til den tid. Det er meget sandsynlig, at det til den tid vil være relevant at videreføre forsøget med andre formål.

Center for Skov, Landskab og Planlægning, KVL (Skov & Landskab), forestår forsøgets drift, analyse og afrapportering. Skov & Landskab udfører i den forbindelse tilsyn, udvisning, malerarbejde og registreringer i forsøget ved alle driftsaktiviteter. Afmærkning af forsøget foretages af Skov & Landskab og vedligeholdes i samarbejde med Statsskovdistriktet.

Statsskovdistriktet udfører alle forløsige aktiviteter for egen regning og i hvert enkelt tilfælde efter nærmere, forudgående aftale med Skov & Landskab. Statsskovdistriktet informerer Skov & Landskab om alle aktiviteter eller specielle omstændigheder (f.eks. insektangreb, sygdom, frostskader osv.) i forsøget.

Statsskovdistriktet indvilliger i ikke at foretage dispositioner, som kan ændre forsøgsbetingelserne. Det gælder især for ikke-ryddede stammer, kroner eller rødder i forsøgsparcellerne.

Randbøl Statsskovdistrikt

Steffen Jørgensen
skovider

Hørsholm,

(Bo Jellesmark Thorsen)
Center for Skov, Landskab og Planlægning, KVL

16-04

81
MODTAGET
18 JUNI 2004

Aftale
mellem Lindet Statsskovdistrikt og
Center for Skov, Landskab og Planlægning, KVL.

om forsøg nr. 1513, "Genetablering af skov på stormfaldsarealer ved naturlig foryngelse" i Lovrup Skov & Råbjerg Plantage.

Forsøget forventes at fortsætte mindst til 2019. Det forventes at foryngelsesprocesen er afsluttet til den tid. Det er meget sandsynlig, at det til den tid vil være relevant at videreføre forsøget med andre formål.

Statsskovdistriktet udfører alle forstilige aktiviteter for egen regning og i hvert enkelt tilfælde efter nærmere, forudgående aftale med Skov & Landskab. Statsskovdistriktet informerer Skov & Landskab om alle aktiviteter eller specielle omstændigheder (f.eks. insektangreb, sygdom, frosthader osv.) i forsøget.

Statsskovdistriktet indvilliger i ikke at foretage dispositioner, som kan ændre forsegelslægelsens. Det gælder især for ikke-ryddede stammer, kroner eller rødder i forsegelsparcellerne.

Lindet Statsskovdistrikt

(Bo Jelsbak & Thorsen)
Center for Skov, Landskab og Planlægning, KVL
Aftale
mellem Haderslev Statskodistrikt og
Center for Skov, Landskab og Planlægning, KVL.
on forøg nr. 1513, "Genetablering af skov på stormfaldsarealer ved naturlig foryngelse"
in Frederikshåb Plantage.

Forsøg nr. 1513 er placeret i fire blokke i Stursholm Hegn. Den nøjagtige placering fremgår af
december 1999. Anlæggelsen og undersøgelsen igennem de første fire år blev finansieret af Skov-og
Naturstyrelsen. Forsøgets formål er at undersøge mulighederne for genetablering efter stormfald
ved hjælp af naturlig foryngelse. En del af forsøget er en sammenligning med plantede kulturer. En
del af forøgsparcellerne er ikke blevet ryddet efter stormfaldet i 1999 (dog ikke i Frederikshåb
Plantage). Forsøget er gentaget i tre forskellige skove (Frederikshåb Plantage, Stursholm Hegn,
Lovrup Skov). Det samlede forøgsareal (parcellerne og mellemstriber) i Stursholm Hegn er ca. 18,5
ha.

Forsøget forventes at fortsætte mindst til 2019. Det forventes at foryngelsesprocessen er afsluttet til
den tid. Det er meget sandsynlig, at det til den tid vil være relevant at videreføre forsøget med andre
formål.

Center for Skov, Landskab og Planlægning, KVL (Skov & Landskab), forestår forsøgets drift,
analyse og afrapportering. Skov & Landskab udfører i den forbindelse tilsyn, udvinding,
mejlarbejde og registreringer i forsøget ved alle driftsaktiviteter. Afbrydelse af forsøget foretages
af Skov & Landskab og vedligeholdes i samarbejde med Statskodistriktet.

Statskodistriktet udfører alle forskellige aktiviteter for egen regning og i hvert enkelt tilfælde efter
nærmere, forudgående aftale med Skov & Landskab. Statskodistriktet informerer Skov & Landskab
om alle aktiviteter eller specielle omstændigheder (f.eks. insektangreb, sygdom, frostkørsel osv.) i forsøget.

Statskodistriktet indvilliger i ikke at foretage dispositioner, som kan ændre forøgsbetingelserne.
Det gælder især for ikke-ryddede stammer, kroner eller rodder i forøgsparcellerne.

Halvdelen af forøgsparcellerne er hegnet for at beskytte den naturlige foryngelse mod vildtbid.
Hegnene vedligeholdes af Statskodistriktet og kontrolleres for tæthed mindst til efteråret 2008. Hegnene forventes at kunde fjernes til den tid, når foryngelsen ikke vil være udsat for vildtbid

Udførelsen af genkultiveringsmodel nr. 3, hvor den naturlige foryngelse supplieres, besluttes i
samråd med alle statskodistriktet, som er berørt af forsøget. Beslutningen forventes tidligst når
den naturlige foryngelse er synlig og sikret på størstedelen af forøgsparcellerne og det derfor er
muligt at vurdere, hvor og hvordan det supplieres. Skov & Landskab fremlægger et
beslutningsforslag inden udgangen af 2007.

Herskholm, 96-04
(Bo Jellesmark-Thorsen)
Center for Skov, Landskab og Planlægning, KVL

83
13.3 Bilag 3: Luftpotokort 1999

Figur 54. Luftbillede af blok F1 i Frederikshåb Plantage 1999 før stormfaldet.
(Ortofotos, Copyright COWI a/s)

Figur 55. Luftbillede af blok F2 i Frederikshåb Plantage 1999 før stormfaldet.
(Ortofotos, Copyright COWI a/s)
Figur 56. Luftbillede af blok F3 i Frederikshåb Plantage 1999 før stormfaldet.
(Ortofotos, Copyright COWI a/s)

Figur 57. Luftbillede af blok F4 i Frederikshåb Plantage 1999 før stormfaldet.
(Ortofotos, Copyright COWI a/s)
Figur 58. Luftbillede af blok L1 i Lovrup Skov 1999 før stormfaldet.
(Ortofotos, Copyright COWI a/s)

Figur 59. Luftbillede af blok L2 i Lovrup Skov 1999 før stormfaldet.
(Ortofotos, Copyright COWI a/s)
Figur 60. Luftbillede af blok L3 i Lovrup Skov 1999 før stormfaldet.
(Ortofotos, Copyright COWI a/s)

Figur 61. Luftbillede af blok L4 i Råbjerg Plantage 1999 før stormfaldet.
(Ortofotos, Copyright COWI a/s)
Figur 62. Luftbillede af blok S1 i Stursbøl hegn 1999 før stormfaldet.
(Ortofotos, Copyright COWI a/s)

Figur 63. Luftbillede af blok S2 i Stursbøl hegn 1999 før stormfaldet.
(Ortofotos, Copyright COWI a/s)
Figur 64. Luftbillede af blok S3 i Stursbøl hægn 1999 før stormfaldet. (Ortofotos, Copyright COWI a/s)

Figur 65. Luftbillede af blok S3 i Stursbøl hægn 1999 før stormfaldet. (Ortofotos, Copyright COWI a/s)
Figur 66. Luftbillede af blok S4 i Stursbøl hegn 1999 før stormfaldet.
(Ortofotos, Copyright COWI a/s)
13.4 Bilag 4: Skovkort efter stormfaldet 1999

De tynde blå linier afgrænser parcelblokken og en 100 m-buffer omkring ydergrænsen af parcelblokken. De farvelagte arealer betegner bevoksninger eller bevoksningsdele som stod tilbage efter stormfaldet i 1999.

Figur 67. Blok F1 i Frederikshåb Plantage.
Figur 68. Blok F2 i Frederikshåb Plantage.

Figur 69. Blok F3 i Frederikshåb Plantage.
Figur 70. Blok F4 i Frederikshåb Plantage.

Figur 71. Blok L1 – L3 i Lovrup Skov.
Figur 72. Blok L4 i Raabjerg Plantage.

Figur 73. Blok S1 i Stursbøl Hegn.
Figur 74. Blok S2 og S3 i Stursbøl Hegn.

Figur 75. Blok S4 i Stursbøl Hegn.
13.5 Bilag 5: Udvalgte fotografier af forsøgsparcellerne

Figur 77. Parcel F12h 2002.

Figur 78. Parcel F12h 2003.

Arbejdsrapporter *Skov & Landskab*

Nr. 1 · 2004 Etablering af løvtræ på marginale landbrugsjorder
Nr. 2 · 2004 Sekventiel udbringning af gødning til nordmannsgran juletræer
Nr. 3 · 2004 Metroens effekt på ansattes transportadfærd
Nr. 4 · 2004 Æstetisk sansning og naturvidenskabelig naturforståelse
Nr. 5 · 2004 endnu ikke udgivet
Nr. 6 · 2005 Status og anbefalinger for friluftsliv i forbindelse med Nationalpark Nordsjælland
Nr. 7 · 2005 Recirkulering af aske i skove
Nr. 8 · 2005 Biomasse til energiformål
Nr. 9 · 2005 Forsøg på bekæmpelse af Blåtop på Randbøl Hede
Nr. 10 · 2005 endnu ikke udgivet
Nr. 11 · 2005 Genetablering af skov på stormfaltsarealer ved naturlig foryngelse