Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii.

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii. / Kadziola, Anders; Jepsen, Clemens H; Johansson, Eva; McGuire, Jim; Larsen, Sine; Hove-Jensen, Bjarne.

In: Journal of Molecular Biology, Vol. 354, No. 4, 2005, p. 815-28.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Kadziola, A, Jepsen, CH, Johansson, E, McGuire, J, Larsen, S & Hove-Jensen, B 2005, 'Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii.', Journal of Molecular Biology, vol. 354, no. 4, pp. 815-28. https://doi.org/10.1016/j.jmb.2005.10.001

APA

Kadziola, A., Jepsen, C. H., Johansson, E., McGuire, J., Larsen, S., & Hove-Jensen, B. (2005). Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii. Journal of Molecular Biology, 354(4), 815-28. https://doi.org/10.1016/j.jmb.2005.10.001

Vancouver

Kadziola A, Jepsen CH, Johansson E, McGuire J, Larsen S, Hove-Jensen B. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii. Journal of Molecular Biology. 2005;354(4):815-28. https://doi.org/10.1016/j.jmb.2005.10.001

Author

Kadziola, Anders ; Jepsen, Clemens H ; Johansson, Eva ; McGuire, Jim ; Larsen, Sine ; Hove-Jensen, Bjarne. / Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii. In: Journal of Molecular Biology. 2005 ; Vol. 354, No. 4. pp. 815-28.

Bibtex

@article{a4b9f150ac0b11ddb5e9000ea68e967b,
title = "Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii.",
abstract = "The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and the crystal structure determined. The enzyme is activated by phosphate ions and only ATP or dATP serve as diphosphoryl donors. The K(m) values are determined as 2.6 mM and 2.8 mM for ATP and ribose 5-phosphate, respectively, and the V(max) value as 2.20 mmol (minxmg of protein)(-1). ADP is a potent inhibitor of activity while GDP has no effect. A single ADP binding site, the active site, is present per subunit. The crystal structure of the enzyme reveals a more compact subunit than that of the enzyme from the mesophile Bacillus subtilis, caused by truncations at the N and C terminus as well as shorter loops in the M.jannaschii enzyme. The M.jannaschii enzyme displays a tetrameric quaternary structure in contrast to the hexameric quaternary structure of B.subtilis PRPP synthase. Soaking of the crystals with 5'-AMP and PRPP revealed the position of the former compound as well as that of ribose 5-phosphate. The properties of M.jannaschii PRPP synthase differ widely from previously characterised PRPP synthases by its tetrameric quaternary structure and the simultaneous phosphate ion-activation and lack of allosteric inhibition, and, thus, constitute a novel class of PRPP synthases.",
author = "Anders Kadziola and Jepsen, {Clemens H} and Eva Johansson and Jim McGuire and Sine Larsen and Bjarne Hove-Jensen",
note = "Keywords: Adenine Nucleotides; Binding Sites; Cloning, Molecular; Crystallography, X-Ray; Enzyme Inhibitors; Kinetics; Methanococcales; Phosphates; Protein Binding; Protein Structure, Quaternary; Ribose-Phosphate Pyrophosphokinase",
year = "2005",
doi = "10.1016/j.jmb.2005.10.001",
language = "English",
volume = "354",
pages = "815--28",
journal = "Journal of Molecular Biology",
issn = "0022-2836",
publisher = "Academic Press",
number = "4",

}

RIS

TY - JOUR

T1 - Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii.

AU - Kadziola, Anders

AU - Jepsen, Clemens H

AU - Johansson, Eva

AU - McGuire, Jim

AU - Larsen, Sine

AU - Hove-Jensen, Bjarne

N1 - Keywords: Adenine Nucleotides; Binding Sites; Cloning, Molecular; Crystallography, X-Ray; Enzyme Inhibitors; Kinetics; Methanococcales; Phosphates; Protein Binding; Protein Structure, Quaternary; Ribose-Phosphate Pyrophosphokinase

PY - 2005

Y1 - 2005

N2 - The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and the crystal structure determined. The enzyme is activated by phosphate ions and only ATP or dATP serve as diphosphoryl donors. The K(m) values are determined as 2.6 mM and 2.8 mM for ATP and ribose 5-phosphate, respectively, and the V(max) value as 2.20 mmol (minxmg of protein)(-1). ADP is a potent inhibitor of activity while GDP has no effect. A single ADP binding site, the active site, is present per subunit. The crystal structure of the enzyme reveals a more compact subunit than that of the enzyme from the mesophile Bacillus subtilis, caused by truncations at the N and C terminus as well as shorter loops in the M.jannaschii enzyme. The M.jannaschii enzyme displays a tetrameric quaternary structure in contrast to the hexameric quaternary structure of B.subtilis PRPP synthase. Soaking of the crystals with 5'-AMP and PRPP revealed the position of the former compound as well as that of ribose 5-phosphate. The properties of M.jannaschii PRPP synthase differ widely from previously characterised PRPP synthases by its tetrameric quaternary structure and the simultaneous phosphate ion-activation and lack of allosteric inhibition, and, thus, constitute a novel class of PRPP synthases.

AB - The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and the crystal structure determined. The enzyme is activated by phosphate ions and only ATP or dATP serve as diphosphoryl donors. The K(m) values are determined as 2.6 mM and 2.8 mM for ATP and ribose 5-phosphate, respectively, and the V(max) value as 2.20 mmol (minxmg of protein)(-1). ADP is a potent inhibitor of activity while GDP has no effect. A single ADP binding site, the active site, is present per subunit. The crystal structure of the enzyme reveals a more compact subunit than that of the enzyme from the mesophile Bacillus subtilis, caused by truncations at the N and C terminus as well as shorter loops in the M.jannaschii enzyme. The M.jannaschii enzyme displays a tetrameric quaternary structure in contrast to the hexameric quaternary structure of B.subtilis PRPP synthase. Soaking of the crystals with 5'-AMP and PRPP revealed the position of the former compound as well as that of ribose 5-phosphate. The properties of M.jannaschii PRPP synthase differ widely from previously characterised PRPP synthases by its tetrameric quaternary structure and the simultaneous phosphate ion-activation and lack of allosteric inhibition, and, thus, constitute a novel class of PRPP synthases.

U2 - 10.1016/j.jmb.2005.10.001

DO - 10.1016/j.jmb.2005.10.001

M3 - Journal article

C2 - 16288921

VL - 354

SP - 815

EP - 828

JO - Journal of Molecular Biology

JF - Journal of Molecular Biology

SN - 0022-2836

IS - 4

ER -

ID: 8443526