Production of unusual dispiro metabolites in Pestalotiopsis virgatula endophyte cultures: HPLC-SPE-NMR, electronic circular dichroism, and time-dependent density-functional computation study

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

  • Julie Regitze Kesting
  • Lars Olsen
  • Stærk, Dan
  • Mysore V Tejesvi
  • Kukkundoor R Kini
  • Harishchandra S Prakash
  • Jerzy W. Jaroszewski
The endophytic fungus Pestalotiopsis virgatula, derived from the plant Terminalia chebula and previously found to produce a large excess of a single metabolite when grown in the minimal M1D medium, was induced to produce a variety of unusual metabolites by growing in potato dextrose broth medium. Analysis of the fermentation medium extract was performed using an HPLC-PDA-MS-SPE-NMR hyphenated system, which led to the identification of a total of eight metabolites (1-8), six of which are new. Most of the metabolites are structurally related and are derivatives of benzo[c]oxepin, rare among natural products. This includes dispiro derivatives 7 and 8 (pestalospiranes A and B), having a novel 1,9,11,18-tetraoxadispiro[]octadecane skeleton. Relative and absolute configurations of the latter were determined by a combination of NOESY spectroscopy and electronic circular dichroism spectroscopy supported by time-dependent density-functional theory calculations (B3LYP/TZVP level). This work demonstrates that a largely complete structure elucidation of numerous metabolites present in a raw fermentation medium extract can be performed by the HPLC-SPE-NMR technique using only a small amount of the extract, even with unstable metabolites that are difficult to isolate by traditional methods.
TidsskriftJournal of Natural Products
Udgave nummer10
Sider (fra-til)2206-2215
StatusUdgivet - 26 sep. 2011

ID: 34528049