Utilization of milk amino acids for body gain in suckling mink (Mustela vison) kits

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

The efficiency of utilization of milk amino acids for body gain in suckling mink kits from small (n = 3), medium (n = 6) and large litters (n = 9) was investigated by using 36 mink dams and their litters for measurements during lactation weeks 1 through 4. Measurements on each dam and litter were performed once, hence three dams per litter size each week (n = 9). Individual milk intake of kits was determined, milk samples were collected and kits were killed for determination of amino acid composition. The most abundant amino acids in milk were glutamate, leucine and aspartate making up about 40% of total amino acids. Branched chained amino acids made up slightly more than 20% and sulphur containing amino acids less than 5% of total milk amino acids. In kit bodies the sum of glutamate, aspartate and leucine made up about 32% of amino acids, branched chain amino acids about 16% and sulphur containing amino acids about 4%. The amino acid composition of both milk and bodies changed as lactation progressed with decreasing proportions of essential amino acids. The ratio between body and milk amino acids was constantly over 1 only for lysine, suggesting that it was the most limiting amino acid in mink milk. Milk amino acids were efficiently utilized during week 1, ranging from 74.7% (lysine) to 42.1% (leucine), with an average for essential amino acids of 58.4%. Tendencies for improved utilization of lysine (74.7-78.2%), phenylalanine (61.0-70.0%), histidine (62.4-68.8%), arginine (61.3-70.4%) and all essential amino acids (58.4-60.2%) from week 1 to week 2 were recorded. During weeks 3 and 4, the efficiency declined, and for all essential amino acids the average utilization was 38.1% during week 4.
OriginalsprogEngelsk
TidsskriftArchives of Animal Nutrition
Vol/bind59
Udgave nummer2
Sider (fra-til)99-109
Antal sider11
ISSN1745-039X
DOI
StatusUdgivet - apr. 2005

ID: 8000491