Survival of environmental DNA in sediments: Mineralogic control on DNA taphonomy

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 3,01 MB, PDF-dokument

The extraction of environmental DNA (eDNA) from sediments is providing ground-breaking views of past ecosystems and biodiversity. Despite this rich source of information, it is still unclear which sediments favor preservation and why. Here, we used atomic force microscopy and molecular dynamics simulations to explore the DNA-mineral interaction to assess how mineralogy and interfacial geochemistry play a role in the preservation of environmental DNA on mineral substrates. We demonstrate that mineral composition, surface topography, and surface charge influence DNA adsorption behavior as well as preservation. Modeling and experimental data show that DNA damage can be induced by mineral binding if there is a strong driving force for adsorption. The study shows that knowledge of the mineralogical composition of a sediment and the environmental conditions can be useful for assessing if a deposit is capable of storing extracellular DNA and to what extent the DNA would be preserved. Our data adds to the understanding of eDNA taphonomy and highlights that, for some mineral systems, fragmented DNA may not represent old DNA.

OriginalsprogEngelsk
TidsskriftEnvironmental DNA
Vol/bind5
Udgave nummer6
Sider (fra-til)1691-1705
Antal sider15
ISSN2637-4943
DOI
StatusUdgivet - 2023

Bibliografisk note

Funding Information:
This work was supported by research grants from VILLUM FONDEN (00025352), the Danish Council for Independent Research (8123‐00003A), and the Danish National Research Foundation (DNRF128). CLF acknowledges an EPSRC Programme Grant (grant EP/R018820/1) which funds the Crystallization in the Real World consortium. OBAA acknowledges funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska‐Curie grant agreement No. 892889. For the purpose of open access, MJC has applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising from this submission.

Publisher Copyright:
© 2023 The Authors. Environmental DNA published by John Wiley & Sons Ltd.

ID: 374454756