Six1 homeoprotein drives myofiber type IIA specialization in soleus muscle

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

  • Iori Sakakibara
  • Maud Wurmser
  • Matthieu Dos Santos
  • Marc Santolini
  • Serge Ducommun
  • Romain Davaze
  • Anthony Guernec
  • Sakamoto, Kei
  • Pascal Maire

Background: Adult skeletal muscles are composed of slow and fast myofiber subtypes which each express selective genes required for their specific contractile and metabolic activity. Six homeoproteins are transcription factors regulating muscle cell fate through activation of myogenic regulatory factors and driving fast-type gene expression during embryogenesis. Results: We show here that Six1 protein accumulates more robustly in the nuclei of adult fast-type muscles than in adult slow-type muscles, this specific enrichment takes place during perinatal growth. Deletion of Six1 in soleus impaired fast-type myofiber specialization during perinatal development, resulting in a slow phenotype and a complete lack of Myosin heavy chain 2A (MyHCIIA) expression. Global transcriptomic analysis of wild-type and Six1 mutant myofibers identified the gene networks controlled by Six1 in adult soleus muscle. This analysis showed that Six1 is required for the expression of numerous genes encoding fast-type sarcomeric proteins, glycolytic enzymes and controlling intracellular calcium homeostasis. Parvalbumin, a key player of calcium buffering, in particular, is a direct target of Six1 in the adult myofiber. Conclusions: This analysis revealed that Six1 controls distinct aspects of adult muscle physiology in vivo, and acts as a main determinant of fast-fiber type acquisition and maintenance.

OriginalsprogEngelsk
Artikelnummer30
TidsskriftSkeletal Muscle
Vol/bind6
Udgave nummer1
ISSN2044-5040
DOI
StatusUdgivet - 5 sep. 2016
Eksternt udgivetJa

ID: 238745347