Quantification of the total Na,K-ATPase concentration in atria and ventricles from mammalian species by measuring 3H-ouabain binding to intact myocardial samples. Stability to short term ischemia reperfusion

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Quantification of the total Na,K-ATPase concentration in atria and ventricles from mammalian species by measuring 3H-ouabain binding to intact myocardial samples. Stability to short term ischemia reperfusion. / Schmidt, T A; Svendsen, Jesper Hastrup; Haunsø, S; Kjeldsen, K.

I: Basic Research in Cardiology, Bind 85, Nr. 4, 2011, s. 411-27.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Schmidt, TA, Svendsen, JH, Haunsø, S & Kjeldsen, K 2011, 'Quantification of the total Na,K-ATPase concentration in atria and ventricles from mammalian species by measuring 3H-ouabain binding to intact myocardial samples. Stability to short term ischemia reperfusion', Basic Research in Cardiology, bind 85, nr. 4, s. 411-27.

APA

Schmidt, T. A., Svendsen, J. H., Haunsø, S., & Kjeldsen, K. (2011). Quantification of the total Na,K-ATPase concentration in atria and ventricles from mammalian species by measuring 3H-ouabain binding to intact myocardial samples. Stability to short term ischemia reperfusion. Basic Research in Cardiology, 85(4), 411-27.

Vancouver

Schmidt TA, Svendsen JH, Haunsø S, Kjeldsen K. Quantification of the total Na,K-ATPase concentration in atria and ventricles from mammalian species by measuring 3H-ouabain binding to intact myocardial samples. Stability to short term ischemia reperfusion. Basic Research in Cardiology. 2011;85(4):411-27.

Author

Schmidt, T A ; Svendsen, Jesper Hastrup ; Haunsø, S ; Kjeldsen, K. / Quantification of the total Na,K-ATPase concentration in atria and ventricles from mammalian species by measuring 3H-ouabain binding to intact myocardial samples. Stability to short term ischemia reperfusion. I: Basic Research in Cardiology. 2011 ; Bind 85, Nr. 4. s. 411-27.

Bibtex

@article{6c5e627a7f7c4c7392dff97c1000b317,
title = "Quantification of the total Na,K-ATPase concentration in atria and ventricles from mammalian species by measuring 3H-ouabain binding to intact myocardial samples. Stability to short term ischemia reperfusion",
abstract = "Na,K-ATPase concentration was measured by vanadate facilitated 3H-ouabain binding to intact samples taken from various parts of porcine and canine myocardium. In porcine and canine heart 3H-ouabain binding site concentration in ventricles was 1.4-2.5 times larger than in atria. Evaluation of 3H-ouabain binding kinetics revealed no major difference between atria and ventricles: Equilibrium was obtained after the same incubation time in right atrium (RA) as in left ventricle (LV), both in porcine and canine heart. Unspecific uptake and retention of 3H-ouabain was for porcine heart RA and LV 1.5 and 1.4, respectively, and for canine heart RA and LV, both 1.2% filling (i.e., volume (ml) of incubation medium 3H-radioactivity taken up per mass unit (g wet wt.) of tissue multiplied by 100). The apparent dissociation constant (KD) was 1.4 x 10(-8) and 1.9 x 10(-8) in porcine RA and LV and 2.6 x 10(-8) and 6.1 x 10(-8) mol/l in canine RA and LV. Loss of specifically bound 3H-ouabain during the washout procedure occurred with a half-life time (T1/2) of 16.7 and 28.6 in RA and LV of porcine heart and 91.2 and 151.6 h in RA and LV of canine heart. Duly corrected for these errors of the method--factor 1.16 and 1.13, respectively, for porcine RA and LV, and factor 1.11 and 1.13 for canine RA and LV, total 3H-ouabain binding site concentration was found to be 553 +/- 74 and 1037 +/- 45 pmol/g wet wt. (means +/- SEM, n = 5) in porcine RA and LV, and 569 +/- 37 and 1410 +/- 40 pmol/g wet wt. (means +/- SEM, n = 5) in the canine RA and LV. These values were confirmed by measurements of 3H-digoxin binding to the porcine heart. The present quantification of myocardial Na,K-ATPase gives values up to 154 times higher than measurements based upon Na,K-ATPase activities in membrane fractions where the recovery of Na,K-ATPase may be less than 1% due to loss during purification. A higher Na,K-ATPase concentration is found in small animals than in large animals. A relationship between higher concentration of Na,K-ATPase and larger pressure work in ventricles compared to atria is suggested. Myocardial 3H-ouabain binding sites were found to be stable for 20 min of ischemia, followed by 1 h of reperfusion, supporting the concept that myocyte injury induced by short term ischemia may be reversible and that reperfusion may result in normalization.",
keywords = "Animals, Coronary Disease, Digoxin, Dogs, Female, Heart Atria, Heart Ventricles, Male, Myocardial Reperfusion, Myocardium, Osmolar Concentration, Ouabain, Sodium-Potassium-Exchanging ATPase, Swine, Time Factors, Tritium",
author = "Schmidt, {T A} and Svendsen, {Jesper Hastrup} and S Hauns{\o} and K Kjeldsen",
year = "2011",
language = "English",
volume = "85",
pages = "411--27",
journal = "Basic Research in Cardiology",
issn = "0300-8428",
publisher = "Springer Medizin",
number = "4",

}

RIS

TY - JOUR

T1 - Quantification of the total Na,K-ATPase concentration in atria and ventricles from mammalian species by measuring 3H-ouabain binding to intact myocardial samples. Stability to short term ischemia reperfusion

AU - Schmidt, T A

AU - Svendsen, Jesper Hastrup

AU - Haunsø, S

AU - Kjeldsen, K

PY - 2011

Y1 - 2011

N2 - Na,K-ATPase concentration was measured by vanadate facilitated 3H-ouabain binding to intact samples taken from various parts of porcine and canine myocardium. In porcine and canine heart 3H-ouabain binding site concentration in ventricles was 1.4-2.5 times larger than in atria. Evaluation of 3H-ouabain binding kinetics revealed no major difference between atria and ventricles: Equilibrium was obtained after the same incubation time in right atrium (RA) as in left ventricle (LV), both in porcine and canine heart. Unspecific uptake and retention of 3H-ouabain was for porcine heart RA and LV 1.5 and 1.4, respectively, and for canine heart RA and LV, both 1.2% filling (i.e., volume (ml) of incubation medium 3H-radioactivity taken up per mass unit (g wet wt.) of tissue multiplied by 100). The apparent dissociation constant (KD) was 1.4 x 10(-8) and 1.9 x 10(-8) in porcine RA and LV and 2.6 x 10(-8) and 6.1 x 10(-8) mol/l in canine RA and LV. Loss of specifically bound 3H-ouabain during the washout procedure occurred with a half-life time (T1/2) of 16.7 and 28.6 in RA and LV of porcine heart and 91.2 and 151.6 h in RA and LV of canine heart. Duly corrected for these errors of the method--factor 1.16 and 1.13, respectively, for porcine RA and LV, and factor 1.11 and 1.13 for canine RA and LV, total 3H-ouabain binding site concentration was found to be 553 +/- 74 and 1037 +/- 45 pmol/g wet wt. (means +/- SEM, n = 5) in porcine RA and LV, and 569 +/- 37 and 1410 +/- 40 pmol/g wet wt. (means +/- SEM, n = 5) in the canine RA and LV. These values were confirmed by measurements of 3H-digoxin binding to the porcine heart. The present quantification of myocardial Na,K-ATPase gives values up to 154 times higher than measurements based upon Na,K-ATPase activities in membrane fractions where the recovery of Na,K-ATPase may be less than 1% due to loss during purification. A higher Na,K-ATPase concentration is found in small animals than in large animals. A relationship between higher concentration of Na,K-ATPase and larger pressure work in ventricles compared to atria is suggested. Myocardial 3H-ouabain binding sites were found to be stable for 20 min of ischemia, followed by 1 h of reperfusion, supporting the concept that myocyte injury induced by short term ischemia may be reversible and that reperfusion may result in normalization.

AB - Na,K-ATPase concentration was measured by vanadate facilitated 3H-ouabain binding to intact samples taken from various parts of porcine and canine myocardium. In porcine and canine heart 3H-ouabain binding site concentration in ventricles was 1.4-2.5 times larger than in atria. Evaluation of 3H-ouabain binding kinetics revealed no major difference between atria and ventricles: Equilibrium was obtained after the same incubation time in right atrium (RA) as in left ventricle (LV), both in porcine and canine heart. Unspecific uptake and retention of 3H-ouabain was for porcine heart RA and LV 1.5 and 1.4, respectively, and for canine heart RA and LV, both 1.2% filling (i.e., volume (ml) of incubation medium 3H-radioactivity taken up per mass unit (g wet wt.) of tissue multiplied by 100). The apparent dissociation constant (KD) was 1.4 x 10(-8) and 1.9 x 10(-8) in porcine RA and LV and 2.6 x 10(-8) and 6.1 x 10(-8) mol/l in canine RA and LV. Loss of specifically bound 3H-ouabain during the washout procedure occurred with a half-life time (T1/2) of 16.7 and 28.6 in RA and LV of porcine heart and 91.2 and 151.6 h in RA and LV of canine heart. Duly corrected for these errors of the method--factor 1.16 and 1.13, respectively, for porcine RA and LV, and factor 1.11 and 1.13 for canine RA and LV, total 3H-ouabain binding site concentration was found to be 553 +/- 74 and 1037 +/- 45 pmol/g wet wt. (means +/- SEM, n = 5) in porcine RA and LV, and 569 +/- 37 and 1410 +/- 40 pmol/g wet wt. (means +/- SEM, n = 5) in the canine RA and LV. These values were confirmed by measurements of 3H-digoxin binding to the porcine heart. The present quantification of myocardial Na,K-ATPase gives values up to 154 times higher than measurements based upon Na,K-ATPase activities in membrane fractions where the recovery of Na,K-ATPase may be less than 1% due to loss during purification. A higher Na,K-ATPase concentration is found in small animals than in large animals. A relationship between higher concentration of Na,K-ATPase and larger pressure work in ventricles compared to atria is suggested. Myocardial 3H-ouabain binding sites were found to be stable for 20 min of ischemia, followed by 1 h of reperfusion, supporting the concept that myocyte injury induced by short term ischemia may be reversible and that reperfusion may result in normalization.

KW - Animals

KW - Coronary Disease

KW - Digoxin

KW - Dogs

KW - Female

KW - Heart Atria

KW - Heart Ventricles

KW - Male

KW - Myocardial Reperfusion

KW - Myocardium

KW - Osmolar Concentration

KW - Ouabain

KW - Sodium-Potassium-Exchanging ATPase

KW - Swine

KW - Time Factors

KW - Tritium

M3 - Journal article

C2 - 2173546

VL - 85

SP - 411

EP - 427

JO - Basic Research in Cardiology

JF - Basic Research in Cardiology

SN - 0300-8428

IS - 4

ER -

ID: 32477098