Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. / Carneiro, Ana; Isinger, Anna; Karlsson, Anna; Johansson, Jan; Jönsson, Göran; Bendahl, Pär-Ola; Falkenback, Dan; Halvarsson, Britta; Nilbert, Mef.

I: B M C Cancer, Bind 11, Nr. 8, 2008, s. 98.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Carneiro, A, Isinger, A, Karlsson, A, Johansson, J, Jönsson, G, Bendahl, P-O, Falkenback, D, Halvarsson, B & Nilbert, M 2008, 'Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer.', B M C Cancer, bind 11, nr. 8, s. 98. https://doi.org/10.1186/1471-2407-8-98

APA

Carneiro, A., Isinger, A., Karlsson, A., Johansson, J., Jönsson, G., Bendahl, P-O., Falkenback, D., Halvarsson, B., & Nilbert, M. (2008). Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. B M C Cancer, 11(8), 98. https://doi.org/10.1186/1471-2407-8-98

Vancouver

Carneiro A, Isinger A, Karlsson A, Johansson J, Jönsson G, Bendahl P-O o.a. Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. B M C Cancer. 2008;11(8):98. https://doi.org/10.1186/1471-2407-8-98

Author

Carneiro, Ana ; Isinger, Anna ; Karlsson, Anna ; Johansson, Jan ; Jönsson, Göran ; Bendahl, Pär-Ola ; Falkenback, Dan ; Halvarsson, Britta ; Nilbert, Mef. / Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. I: B M C Cancer. 2008 ; Bind 11, Nr. 8. s. 98.

Bibtex

@article{4baef6029a16490daefb923a46659d77,
title = "Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer.",
abstract = "BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. METHODS: A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential interdependent alterations and deranged pathways were identified and copy number changes were correlated to stage, differentiation and survival. RESULTS: Copy number alterations affected median 19% of the genome and included recurrent gains of chromosome regions 5p, 7p, 7q, 8q, 10q, 11q, 12p, 14q, 16p, 17p, 19p, 19q, and 20q and losses of 3p, 5q, 8p, 9p and 11q. High-level amplifications were observed in 30 regions and recurrently involved 7p11 (EGFR), 11q13 (MYEOV, CCND1, FGF4, FGF3, PPFIA, FAD, TMEM16A, CTTS and SHANK2) and 11q22 (PDFG). Gain of 7p22.3 predicted nodal metastases and gains of 1p36.32 and 19p13.3 independently predicted poor survival in multivariate analysis. CONCLUSION: aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict survival, suggesting clinical applicability of genomic profiling in ESCC. Udgivelsesdato: 2008-april",
author = "Ana Carneiro and Anna Isinger and Anna Karlsson and Jan Johansson and G{\"o}ran J{\"o}nsson and P{\"a}r-Ola Bendahl and Dan Falkenback and Britta Halvarsson and Mef Nilbert",
year = "2008",
doi = "http://dx.doi.org/10.1186/1471-2407-8-98",
language = "English",
volume = "11",
pages = "98",
journal = "B M C Cancer",
issn = "1471-2407",
publisher = "BioMed Central Ltd.",
number = "8",

}

RIS

TY - JOUR

T1 - Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer.

AU - Carneiro, Ana

AU - Isinger, Anna

AU - Karlsson, Anna

AU - Johansson, Jan

AU - Jönsson, Göran

AU - Bendahl, Pär-Ola

AU - Falkenback, Dan

AU - Halvarsson, Britta

AU - Nilbert, Mef

PY - 2008

Y1 - 2008

N2 - BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. METHODS: A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential interdependent alterations and deranged pathways were identified and copy number changes were correlated to stage, differentiation and survival. RESULTS: Copy number alterations affected median 19% of the genome and included recurrent gains of chromosome regions 5p, 7p, 7q, 8q, 10q, 11q, 12p, 14q, 16p, 17p, 19p, 19q, and 20q and losses of 3p, 5q, 8p, 9p and 11q. High-level amplifications were observed in 30 regions and recurrently involved 7p11 (EGFR), 11q13 (MYEOV, CCND1, FGF4, FGF3, PPFIA, FAD, TMEM16A, CTTS and SHANK2) and 11q22 (PDFG). Gain of 7p22.3 predicted nodal metastases and gains of 1p36.32 and 19p13.3 independently predicted poor survival in multivariate analysis. CONCLUSION: aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict survival, suggesting clinical applicability of genomic profiling in ESCC. Udgivelsesdato: 2008-april

AB - BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. METHODS: A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential interdependent alterations and deranged pathways were identified and copy number changes were correlated to stage, differentiation and survival. RESULTS: Copy number alterations affected median 19% of the genome and included recurrent gains of chromosome regions 5p, 7p, 7q, 8q, 10q, 11q, 12p, 14q, 16p, 17p, 19p, 19q, and 20q and losses of 3p, 5q, 8p, 9p and 11q. High-level amplifications were observed in 30 regions and recurrently involved 7p11 (EGFR), 11q13 (MYEOV, CCND1, FGF4, FGF3, PPFIA, FAD, TMEM16A, CTTS and SHANK2) and 11q22 (PDFG). Gain of 7p22.3 predicted nodal metastases and gains of 1p36.32 and 19p13.3 independently predicted poor survival in multivariate analysis. CONCLUSION: aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict survival, suggesting clinical applicability of genomic profiling in ESCC. Udgivelsesdato: 2008-april

U2 - http://dx.doi.org/10.1186/1471-2407-8-98

DO - http://dx.doi.org/10.1186/1471-2407-8-98

M3 - Journal article

VL - 11

SP - 98

JO - B M C Cancer

JF - B M C Cancer

SN - 1471-2407

IS - 8

ER -

ID: 40183222