Matrix effects in nilotinib formulations with pH-responsive polymer produced by carbon dioxide-mediated precipitation

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

  • Stefano Colombo
  • Magnus Brisander
  • Jakob Haglöf
  • Peter Sjövall
  • Per Andersson
  • Østergaard, Jesper
  • Martin Malmsten

Factors determining the pH-controlled dissolution kinetics of nilotinib formulations with the pH-titrable polymer hydroxypropyl methylcellulose phthalate, obtained by carbon dioxide-mediated precipitation, were mechanistically examined in acid and neutral environment. The matrix effect, modulating the drug dissolution, was characterized with a battery of physicochemical methodologies, including ToF-SIMS for surface composition, SAXS/WAXS and modulated DSC for crystallization characterization, and simultaneous UV-imaging and Raman spectroscopy for monitoring the dissolution process in detail. The hybrid particle formulations investigated consisted of amorphous nilotinib embedded in a polymer matrix in single continuous phase, displaying extended retained amorphicity also under wet conditions. It was demonstrated by Raman and FTIR spectroscopy that the efficient drug dispersion and amorphization in the polymer matrix were mediated by hydrogen bonding between the drug and the phthalate groups on the polymer. Simultaneous Raman and UV-imaging studies of the effect of drug load on the swelling and dissolution of the polymer matrix revealed that high nilotinib load prevented matrix swelling on passage from acid to neutral pH, thereby preventing re-precipitation and re-crystallization of incorporated nilotinib. These findings provide a mechanistic foundation of formulation development of nilotinib and other protein kinase inhibitors, which are now witnessing an intense therapeutic and industrial attention due to the difficulty in formulating these compounds so that efficient oral bioavailability is reached.

OriginalsprogEngelsk
TidsskriftInternational Journal of Pharmaceutics
Vol/bind494
Udgave nummer1
Sider (fra-til)205-217
Antal sider13
ISSN0378-5173
DOI
StatusUdgivet - 15 okt. 2015

ID: 144456793