Identification of expressed genes during infection of chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Identification of expressed genes during infection of chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae. / Sundelin, Thomas; Jensen, Dan Funck; Lübeck, Mette.

I: Journal of Eukaryotic Microbiology, Bind 58, Nr. 4, 2011, s. 310-314.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Sundelin, T, Jensen, DF & Lübeck, M 2011, 'Identification of expressed genes during infection of chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae', Journal of Eukaryotic Microbiology, bind 58, nr. 4, s. 310-314. https://doi.org/10.1111/j.1550-7408.2011.00551.x

APA

Sundelin, T., Jensen, D. F., & Lübeck, M. (2011). Identification of expressed genes during infection of chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae. Journal of Eukaryotic Microbiology, 58(4), 310-314. https://doi.org/10.1111/j.1550-7408.2011.00551.x

Vancouver

Sundelin T, Jensen DF, Lübeck M. Identification of expressed genes during infection of chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae. Journal of Eukaryotic Microbiology. 2011;58(4):310-314. https://doi.org/10.1111/j.1550-7408.2011.00551.x

Author

Sundelin, Thomas ; Jensen, Dan Funck ; Lübeck, Mette. / Identification of expressed genes during infection of chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae. I: Journal of Eukaryotic Microbiology. 2011 ; Bind 58, Nr. 4. s. 310-314.

Bibtex

@article{d62f5730c71d480cb46eae2419aff5d2,
title = "Identification of expressed genes during infection of chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae",
abstract = "Plasmodiophora brassicae is an obligate, biotrophic pathogen causing the club-root disease of crucifers. Despite its importance as a plant pathogen, little is known about P. brassicae at the molecular level as most of its life cycle takes place inside the plant host, and axenic culturing is impossible. Discovery of genes expressed during infection and gene organization are the first steps toward a better understanding of the pathogen–host interaction. Here, suppression subtractive hybridization was used to search for the P. brassicae genes expressed during plant infection. One-hundred and forty ESTs were found of which 49% proved to be P. brassicae genes. Ten novel P. brassicae genes were identified, and the genomic sequences surrounding four of the ESTs were acquired using genome walking. Alignment of the ESTs and the genomic DNA sequences confirmed that P. brassicae genes are intron rich and that the introns are small. These results show that it is possible to discover new P. brassicae genes from a mixed pool of both plant and pathogen cDNA. The results also revealed that some of the P. brassicae genes expressed in Chinese cabbage (Brassica rapa subsp. pekinensis) were identical to the genes expressed in the infection of Arabidopsis plants, indicating that these genes play an important role in P. brassicae infection. ",
author = "Thomas Sundelin and Jensen, {Dan Funck} and Mette L{\"u}beck",
year = "2011",
doi = "10.1111/j.1550-7408.2011.00551.x",
language = "English",
volume = "58",
pages = "310--314",
journal = "Journal of Eukaryotic Microbiology",
issn = "1066-5234",
publisher = "Wiley-Blackwell",
number = "4",

}

RIS

TY - JOUR

T1 - Identification of expressed genes during infection of chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae

AU - Sundelin, Thomas

AU - Jensen, Dan Funck

AU - Lübeck, Mette

PY - 2011

Y1 - 2011

N2 - Plasmodiophora brassicae is an obligate, biotrophic pathogen causing the club-root disease of crucifers. Despite its importance as a plant pathogen, little is known about P. brassicae at the molecular level as most of its life cycle takes place inside the plant host, and axenic culturing is impossible. Discovery of genes expressed during infection and gene organization are the first steps toward a better understanding of the pathogen–host interaction. Here, suppression subtractive hybridization was used to search for the P. brassicae genes expressed during plant infection. One-hundred and forty ESTs were found of which 49% proved to be P. brassicae genes. Ten novel P. brassicae genes were identified, and the genomic sequences surrounding four of the ESTs were acquired using genome walking. Alignment of the ESTs and the genomic DNA sequences confirmed that P. brassicae genes are intron rich and that the introns are small. These results show that it is possible to discover new P. brassicae genes from a mixed pool of both plant and pathogen cDNA. The results also revealed that some of the P. brassicae genes expressed in Chinese cabbage (Brassica rapa subsp. pekinensis) were identical to the genes expressed in the infection of Arabidopsis plants, indicating that these genes play an important role in P. brassicae infection.

AB - Plasmodiophora brassicae is an obligate, biotrophic pathogen causing the club-root disease of crucifers. Despite its importance as a plant pathogen, little is known about P. brassicae at the molecular level as most of its life cycle takes place inside the plant host, and axenic culturing is impossible. Discovery of genes expressed during infection and gene organization are the first steps toward a better understanding of the pathogen–host interaction. Here, suppression subtractive hybridization was used to search for the P. brassicae genes expressed during plant infection. One-hundred and forty ESTs were found of which 49% proved to be P. brassicae genes. Ten novel P. brassicae genes were identified, and the genomic sequences surrounding four of the ESTs were acquired using genome walking. Alignment of the ESTs and the genomic DNA sequences confirmed that P. brassicae genes are intron rich and that the introns are small. These results show that it is possible to discover new P. brassicae genes from a mixed pool of both plant and pathogen cDNA. The results also revealed that some of the P. brassicae genes expressed in Chinese cabbage (Brassica rapa subsp. pekinensis) were identical to the genes expressed in the infection of Arabidopsis plants, indicating that these genes play an important role in P. brassicae infection.

U2 - 10.1111/j.1550-7408.2011.00551.x

DO - 10.1111/j.1550-7408.2011.00551.x

M3 - Journal article

C2 - 21518080

VL - 58

SP - 310

EP - 314

JO - Journal of Eukaryotic Microbiology

JF - Journal of Eukaryotic Microbiology

SN - 1066-5234

IS - 4

ER -

ID: 35163469