Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator. / Kong, Stephanie E.; Kobor, Michael S.; Krogan, Nevan J.; Somesh, Baggavalli P.; Søgaard, T. Max M.; Greenblatt, Jack F.; Svejstrup, Jesper Q.

In: Journal of Biological Chemistry, Vol. 280, No. 6, 11.02.2005, p. 4299-4306.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Kong, SE, Kobor, MS, Krogan, NJ, Somesh, BP, Søgaard, TMM, Greenblatt, JF & Svejstrup, JQ 2005, 'Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator', Journal of Biological Chemistry, vol. 280, no. 6, pp. 4299-4306. https://doi.org/10.1074/jbc.M411071200

APA

Kong, S. E., Kobor, M. S., Krogan, N. J., Somesh, B. P., Søgaard, T. M. M., Greenblatt, J. F., & Svejstrup, J. Q. (2005). Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator. Journal of Biological Chemistry, 280(6), 4299-4306. https://doi.org/10.1074/jbc.M411071200

Vancouver

Kong SE, Kobor MS, Krogan NJ, Somesh BP, Søgaard TMM, Greenblatt JF et al. Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator. Journal of Biological Chemistry. 2005 Feb 11;280(6):4299-4306. https://doi.org/10.1074/jbc.M411071200

Author

Kong, Stephanie E. ; Kobor, Michael S. ; Krogan, Nevan J. ; Somesh, Baggavalli P. ; Søgaard, T. Max M. ; Greenblatt, Jack F. ; Svejstrup, Jesper Q. / Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator. In: Journal of Biological Chemistry. 2005 ; Vol. 280, No. 6. pp. 4299-4306.

Bibtex

@article{039cd639682b44c09a2ca923eb953052,
title = "Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator",
abstract = "Fcp1 de-phosphorylates the RNA polymerase II (RNAPII) C-terminal domain (CTD) in vitro, and mutation of the yeast FCP1 gene results in global transcription defects and increased CTD phosphorylation levels in vivo. Here we show that the Fcp1 protein associates with elongating RNAPII holoenzyme in vitro. Our data suggest that the association of Fcp1 with elongating polymerase results in CTD de-phosphorylation when the native ternary RNAPII0-DNA-RNA complex is disrupted. Surprisingly, highly purified yeast Fcp1 dephosphorylates serine 5 but not serine 2 of the RNAPII CTD repeat. Only free RNAPII0(Ser-5) and not RNA-PII0-DNA-RNA ternary complexes act as a good substrate in the Fcp1 CTD de-phosphorylation reaction. In contrast, TFIIH CTD kinase has a pronounced preference for RNAPII incorporated into a ternary complex. Interestingly, the Fcp1 reaction mechanism appears to entail phosphoryl transfer from RNAPII0 directly to Fcp1. Elongator fails to affect the phosphatase activity of Fcp1 in vitro, but genetic evidence points to a functional overlap between Elongator and Fcp1 in vivo. Genetic interactions between Elongator and a number of other transcription factors are also reported. Together, these results shed new light on mechanisms that drive the transcription cycle and point to a role for Fcp1 in the recycling of RNAPII after dissociation from active genes.",
author = "Kong, {Stephanie E.} and Kobor, {Michael S.} and Krogan, {Nevan J.} and Somesh, {Baggavalli P.} and S{\o}gaard, {T. Max M.} and Greenblatt, {Jack F.} and Svejstrup, {Jesper Q.}",
year = "2005",
month = feb,
day = "11",
doi = "10.1074/jbc.M411071200",
language = "English",
volume = "280",
pages = "4299--4306",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology, Inc.",
number = "6",

}

RIS

TY - JOUR

T1 - Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator

AU - Kong, Stephanie E.

AU - Kobor, Michael S.

AU - Krogan, Nevan J.

AU - Somesh, Baggavalli P.

AU - Søgaard, T. Max M.

AU - Greenblatt, Jack F.

AU - Svejstrup, Jesper Q.

PY - 2005/2/11

Y1 - 2005/2/11

N2 - Fcp1 de-phosphorylates the RNA polymerase II (RNAPII) C-terminal domain (CTD) in vitro, and mutation of the yeast FCP1 gene results in global transcription defects and increased CTD phosphorylation levels in vivo. Here we show that the Fcp1 protein associates with elongating RNAPII holoenzyme in vitro. Our data suggest that the association of Fcp1 with elongating polymerase results in CTD de-phosphorylation when the native ternary RNAPII0-DNA-RNA complex is disrupted. Surprisingly, highly purified yeast Fcp1 dephosphorylates serine 5 but not serine 2 of the RNAPII CTD repeat. Only free RNAPII0(Ser-5) and not RNA-PII0-DNA-RNA ternary complexes act as a good substrate in the Fcp1 CTD de-phosphorylation reaction. In contrast, TFIIH CTD kinase has a pronounced preference for RNAPII incorporated into a ternary complex. Interestingly, the Fcp1 reaction mechanism appears to entail phosphoryl transfer from RNAPII0 directly to Fcp1. Elongator fails to affect the phosphatase activity of Fcp1 in vitro, but genetic evidence points to a functional overlap between Elongator and Fcp1 in vivo. Genetic interactions between Elongator and a number of other transcription factors are also reported. Together, these results shed new light on mechanisms that drive the transcription cycle and point to a role for Fcp1 in the recycling of RNAPII after dissociation from active genes.

AB - Fcp1 de-phosphorylates the RNA polymerase II (RNAPII) C-terminal domain (CTD) in vitro, and mutation of the yeast FCP1 gene results in global transcription defects and increased CTD phosphorylation levels in vivo. Here we show that the Fcp1 protein associates with elongating RNAPII holoenzyme in vitro. Our data suggest that the association of Fcp1 with elongating polymerase results in CTD de-phosphorylation when the native ternary RNAPII0-DNA-RNA complex is disrupted. Surprisingly, highly purified yeast Fcp1 dephosphorylates serine 5 but not serine 2 of the RNAPII CTD repeat. Only free RNAPII0(Ser-5) and not RNA-PII0-DNA-RNA ternary complexes act as a good substrate in the Fcp1 CTD de-phosphorylation reaction. In contrast, TFIIH CTD kinase has a pronounced preference for RNAPII incorporated into a ternary complex. Interestingly, the Fcp1 reaction mechanism appears to entail phosphoryl transfer from RNAPII0 directly to Fcp1. Elongator fails to affect the phosphatase activity of Fcp1 in vitro, but genetic evidence points to a functional overlap between Elongator and Fcp1 in vivo. Genetic interactions between Elongator and a number of other transcription factors are also reported. Together, these results shed new light on mechanisms that drive the transcription cycle and point to a role for Fcp1 in the recycling of RNAPII after dissociation from active genes.

U2 - 10.1074/jbc.M411071200

DO - 10.1074/jbc.M411071200

M3 - Journal article

C2 - 15563457

AN - SCOPUS:14244267814

VL - 280

SP - 4299

EP - 4306

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 6

ER -

ID: 331040451