Bacillus velezensis SQR9-induced ammonia-oxidizing bacteria stimulate gross nitrification rates in acidic soils

Research output: Contribution to journalJournal articleResearchpeer-review

Plant growth-promoting microbes (PGPMs) are documented to stimulate nitrification rates and reduce N2O emissions in acidic soils. These microbes play a role in the nitrogen (N) transformation process, although the specific functions and mechanisms by which they affect the gross N transformation are not well understood. In particular, the influence of PGPMs on the relative predominance of ammonia oxidizers in the nitrification process is still unclear. In this study, we conducted a 15N tracing experiment to reveal the impact of PGPM Bacillus velezensis SQR9 on gross N transformations in acidic soils, as well as the microbial pathways involved. SQR9 inoculation considerably enhanced the processes of soil gross mineralization and nitrification by 14.6 % and 29.5 %, respectively. This improvement was found to be associated with the soil's dissolved organic carbon (DOC) content and carbon-to‑nitrogen (C/N) ratio. SQR9 increased the abundance of ammonia-oxidizing bacteria (AOB), resulting in a substantial promotion of autotrophic nitrification, which occupied a dominant role (71.3–82.6 %) in the nitrification process. SQR9 significantly stimulated the proportion of AOB, indicating a transition from ammonia-oxidizing archaea (AOA) to AOB as the dominant ammonia oxidizers, hence promoting the gross nitrification rate. In conclusion, the heightened rates of N transformation are highly associated with the modification of the ammonia-oxidizer B. velezensis SQR9. Our findings offer an updated insight into how PGPMs cause N transformation and provide a theoretical basis for the sensible application of PGPMs in agricultural development.

Original languageEnglish
Article number105503
JournalApplied Soil Ecology
Volume201
Number of pages10
ISSN0929-1393
DOIs
Publication statusPublished - 2024

Bibliographical note

Publisher Copyright:
© 2024 Elsevier B.V.

    Research areas

  • Ammonia-oxidizing bacteria, Mineralization, N transformation, Nitrification, Plant growth-promoting microbe

ID: 397798199