Peripheral membrane proteins modulate stress tolerance by safeguarding cellulose synthases

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Peripheral membrane proteins modulate stress tolerance by safeguarding cellulose synthases. / Kesten, Christopher; García-Moreno, Álvaro; Amorim-Silva, Vítor; Menna, Alexandra; Castillo, Araceli G.; Percio, Francisco; Armengot, Laia; Ruiz-Lopez, Noemi; Jaillais, Yvon; Sánchez-Rodríguez, Clara; Botella, Miguel A.

I: Science Advances, Bind 8, Nr. 46, eabq6971, 2022.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Kesten, C, García-Moreno, Á, Amorim-Silva, V, Menna, A, Castillo, AG, Percio, F, Armengot, L, Ruiz-Lopez, N, Jaillais, Y, Sánchez-Rodríguez, C & Botella, MA 2022, 'Peripheral membrane proteins modulate stress tolerance by safeguarding cellulose synthases', Science Advances, bind 8, nr. 46, eabq6971. https://doi.org/10.1126/sciadv.abq6971

APA

Kesten, C., García-Moreno, Á., Amorim-Silva, V., Menna, A., Castillo, A. G., Percio, F., Armengot, L., Ruiz-Lopez, N., Jaillais, Y., Sánchez-Rodríguez, C., & Botella, M. A. (2022). Peripheral membrane proteins modulate stress tolerance by safeguarding cellulose synthases. Science Advances, 8(46), [eabq6971]. https://doi.org/10.1126/sciadv.abq6971

Vancouver

Kesten C, García-Moreno Á, Amorim-Silva V, Menna A, Castillo AG, Percio F o.a. Peripheral membrane proteins modulate stress tolerance by safeguarding cellulose synthases. Science Advances. 2022;8(46). eabq6971. https://doi.org/10.1126/sciadv.abq6971

Author

Kesten, Christopher ; García-Moreno, Álvaro ; Amorim-Silva, Vítor ; Menna, Alexandra ; Castillo, Araceli G. ; Percio, Francisco ; Armengot, Laia ; Ruiz-Lopez, Noemi ; Jaillais, Yvon ; Sánchez-Rodríguez, Clara ; Botella, Miguel A. / Peripheral membrane proteins modulate stress tolerance by safeguarding cellulose synthases. I: Science Advances. 2022 ; Bind 8, Nr. 46.

Bibtex

@article{3675993c478e4823b6299e09da9d978b,
title = "Peripheral membrane proteins modulate stress tolerance by safeguarding cellulose synthases",
abstract = "Controlled primary cell wall remodeling allows plant growth under stressful conditions, but how these changes are conveyed to adjust cellulose synthesis is not understood. Here, we identify the TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins as new members of the cellulose synthase complex (CSC) and describe their unique and hitherto unknown dynamic association with the CSC under cellulose-deficient conditions. We find that TTLs are essential for maintaining cellulose synthesis under high-salinity conditions, establishing a stress-resilient cortical microtubule array, and stabilizing CSCs at the plasma membrane. To fulfill these functions, TTLs interact with CELLULOSE SYNTHASE 1 (CESA1) and engage with cortical microtubules to promote their polymerization. We propose that TTLs function as bridges connecting stress perception with dynamic regulation of cellulose biosynthesis at the plasma membrane.",
author = "Christopher Kesten and {\'A}lvaro Garc{\'i}a-Moreno and V{\'i}tor Amorim-Silva and Alexandra Menna and Castillo, {Araceli G.} and Francisco Percio and Laia Armengot and Noemi Ruiz-Lopez and Yvon Jaillais and Clara S{\'a}nchez-Rodr{\'i}guez and Botella, {Miguel A.}",
note = "Publisher Copyright: Copyright {\textcopyright} 2022 The Authors, some rights reserved;",
year = "2022",
doi = "10.1126/sciadv.abq6971",
language = "English",
volume = "8",
journal = "Science advances",
issn = "2375-2548",
publisher = "American Association for the Advancement of Science",
number = "46",

}

RIS

TY - JOUR

T1 - Peripheral membrane proteins modulate stress tolerance by safeguarding cellulose synthases

AU - Kesten, Christopher

AU - García-Moreno, Álvaro

AU - Amorim-Silva, Vítor

AU - Menna, Alexandra

AU - Castillo, Araceli G.

AU - Percio, Francisco

AU - Armengot, Laia

AU - Ruiz-Lopez, Noemi

AU - Jaillais, Yvon

AU - Sánchez-Rodríguez, Clara

AU - Botella, Miguel A.

N1 - Publisher Copyright: Copyright © 2022 The Authors, some rights reserved;

PY - 2022

Y1 - 2022

N2 - Controlled primary cell wall remodeling allows plant growth under stressful conditions, but how these changes are conveyed to adjust cellulose synthesis is not understood. Here, we identify the TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins as new members of the cellulose synthase complex (CSC) and describe their unique and hitherto unknown dynamic association with the CSC under cellulose-deficient conditions. We find that TTLs are essential for maintaining cellulose synthesis under high-salinity conditions, establishing a stress-resilient cortical microtubule array, and stabilizing CSCs at the plasma membrane. To fulfill these functions, TTLs interact with CELLULOSE SYNTHASE 1 (CESA1) and engage with cortical microtubules to promote their polymerization. We propose that TTLs function as bridges connecting stress perception with dynamic regulation of cellulose biosynthesis at the plasma membrane.

AB - Controlled primary cell wall remodeling allows plant growth under stressful conditions, but how these changes are conveyed to adjust cellulose synthesis is not understood. Here, we identify the TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins as new members of the cellulose synthase complex (CSC) and describe their unique and hitherto unknown dynamic association with the CSC under cellulose-deficient conditions. We find that TTLs are essential for maintaining cellulose synthesis under high-salinity conditions, establishing a stress-resilient cortical microtubule array, and stabilizing CSCs at the plasma membrane. To fulfill these functions, TTLs interact with CELLULOSE SYNTHASE 1 (CESA1) and engage with cortical microtubules to promote their polymerization. We propose that TTLs function as bridges connecting stress perception with dynamic regulation of cellulose biosynthesis at the plasma membrane.

U2 - 10.1126/sciadv.abq6971

DO - 10.1126/sciadv.abq6971

M3 - Journal article

C2 - 36383676

AN - SCOPUS:85142401187

VL - 8

JO - Science advances

JF - Science advances

SN - 2375-2548

IS - 46

M1 - eabq6971

ER -

ID: 343076342