Monazite and xenotime petrogenesis in the contact aureole of the Makhavinekh Lake Pluton, northern Labrador

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

High-temperature (700-900°C) metamorphism in the contact aureole of the Makhavinekh Lake Pluton (MLP), northern Labrador, led to the growth of monazite and xenotime during progressive replacement of regional garnet-bearing assemblages (M1) by lower-pressure symplectitic coronas of orthopyroxene + cordierite (M2). In the inner aureole (<500 m from the contact), where M1 garnet is strongly resorbed, high-Y+HREE monazite (XY+HREE 0.14-0.18) occurs as small isolated grains and as discontinuous rims on partially resorbed pre-M2 monazites that were liberated from garnet. Xenotime also occurs as small isolated grains within M2 coronas. Ion-microprobe dating of thin, high-Y rims indicates that new monazite growth occurred during M2. Monazite-xenotime miscibility-gap temperatures are consistent with Al-solubility-in-orthopyroxene thermometry estimates, indicating that peak temperatures in the inner aureole are accurately recorded and preserved by monazite. M2 monazite records, therefore, the temperature and timing of M2 metamorphism. Two net-transfer reactions, modelled using singular value decomposition in the system P-Y-HREE-LREE, are proposed to account for the growth of M2 phosphates: (1) 38 Grt1 + 1 Mnz1 = 1.13 Mnz2 and (2) 737 Grt1 + 1 Ap = 1 Mnz2 + 3.4 Xno2. Reaction (1) conserves P and gave rise to locally coronitic high-Y overgrowths on partially resorbed pre-M2 monazite, whereas reaction (2) accounts for the growth of small new monazite and xenotime grains. Both reactions were highly localized within individual M2 coronas due to slow intergranular diffusion accompanying fluid-undersaturated metamorphism in the MLP aureole. Similar monazite-forming reactions are expected in other polymetamorphosed granulites.

OriginalsprogEngelsk
TidsskriftContributions to Mineralogy and Petrology
Vol/bind148
Udgave nummer5
Sider (fra-til)524-541
Antal sider18
ISSN0010-7999
DOI
StatusUdgivet - 2005
Eksternt udgivetJa

ID: 333882792