Macroscopic Quantum Test with Bulk Acoustic Wave Resonators

Publikation: Bidrag til tidsskriftLetterForskningfagfællebedømt

Standard

Macroscopic Quantum Test with Bulk Acoustic Wave Resonators. / Schrinski, Bjorn; Yang, Yu; von Lupke, Uwe; Bild, Marius; Chu, Yiwen; Hornberger, Klaus; Nimmrichter, Stefan; Fadel, Matteo.

I: Physical Review Letters, Bind 130, Nr. 13, 133604, 31.03.2023.

Publikation: Bidrag til tidsskriftLetterForskningfagfællebedømt

Harvard

Schrinski, B, Yang, Y, von Lupke, U, Bild, M, Chu, Y, Hornberger, K, Nimmrichter, S & Fadel, M 2023, 'Macroscopic Quantum Test with Bulk Acoustic Wave Resonators', Physical Review Letters, bind 130, nr. 13, 133604. https://doi.org/10.1103/PhysRevLett.130.133604

APA

Schrinski, B., Yang, Y., von Lupke, U., Bild, M., Chu, Y., Hornberger, K., Nimmrichter, S., & Fadel, M. (2023). Macroscopic Quantum Test with Bulk Acoustic Wave Resonators. Physical Review Letters, 130(13), [133604]. https://doi.org/10.1103/PhysRevLett.130.133604

Vancouver

Schrinski B, Yang Y, von Lupke U, Bild M, Chu Y, Hornberger K o.a. Macroscopic Quantum Test with Bulk Acoustic Wave Resonators. Physical Review Letters. 2023 mar. 31;130(13). 133604. https://doi.org/10.1103/PhysRevLett.130.133604

Author

Schrinski, Bjorn ; Yang, Yu ; von Lupke, Uwe ; Bild, Marius ; Chu, Yiwen ; Hornberger, Klaus ; Nimmrichter, Stefan ; Fadel, Matteo. / Macroscopic Quantum Test with Bulk Acoustic Wave Resonators. I: Physical Review Letters. 2023 ; Bind 130, Nr. 13.

Bibtex

@article{cf099745a6d6419a85146c78e1575776,
title = "Macroscopic Quantum Test with Bulk Acoustic Wave Resonators",
abstract = "Recently, solid-state mechanical resonators have become a platform for demonstrating nonclassical behavior of systems involving a truly macroscopic number of particles. Here, we perform the most macroscopic quantum test in a mechanical resonator to date, which probes the validity of quantum mechanics by ruling out a classical description at the microgram mass scale. This is done by a direct measurement of the Wigner function of a high-overtone bulk acoustic wave resonator mode, monitoring the gradual decay of negativities over tens of microseconds. While the obtained macroscopicity of mu 1/4 11.3 is on par with state-of-the-art atom interferometers, future improvements of mode geometry and coherence times could test the quantum superposition principle at unprecedented scales and also place more stringent bounds on spontaneous collapse models.",
keywords = "STATE",
author = "Bjorn Schrinski and Yu Yang and {von Lupke}, Uwe and Marius Bild and Yiwen Chu and Klaus Hornberger and Stefan Nimmrichter and Matteo Fadel",
year = "2023",
month = mar,
day = "31",
doi = "10.1103/PhysRevLett.130.133604",
language = "English",
volume = "130",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "13",

}

RIS

TY - JOUR

T1 - Macroscopic Quantum Test with Bulk Acoustic Wave Resonators

AU - Schrinski, Bjorn

AU - Yang, Yu

AU - von Lupke, Uwe

AU - Bild, Marius

AU - Chu, Yiwen

AU - Hornberger, Klaus

AU - Nimmrichter, Stefan

AU - Fadel, Matteo

PY - 2023/3/31

Y1 - 2023/3/31

N2 - Recently, solid-state mechanical resonators have become a platform for demonstrating nonclassical behavior of systems involving a truly macroscopic number of particles. Here, we perform the most macroscopic quantum test in a mechanical resonator to date, which probes the validity of quantum mechanics by ruling out a classical description at the microgram mass scale. This is done by a direct measurement of the Wigner function of a high-overtone bulk acoustic wave resonator mode, monitoring the gradual decay of negativities over tens of microseconds. While the obtained macroscopicity of mu 1/4 11.3 is on par with state-of-the-art atom interferometers, future improvements of mode geometry and coherence times could test the quantum superposition principle at unprecedented scales and also place more stringent bounds on spontaneous collapse models.

AB - Recently, solid-state mechanical resonators have become a platform for demonstrating nonclassical behavior of systems involving a truly macroscopic number of particles. Here, we perform the most macroscopic quantum test in a mechanical resonator to date, which probes the validity of quantum mechanics by ruling out a classical description at the microgram mass scale. This is done by a direct measurement of the Wigner function of a high-overtone bulk acoustic wave resonator mode, monitoring the gradual decay of negativities over tens of microseconds. While the obtained macroscopicity of mu 1/4 11.3 is on par with state-of-the-art atom interferometers, future improvements of mode geometry and coherence times could test the quantum superposition principle at unprecedented scales and also place more stringent bounds on spontaneous collapse models.

KW - STATE

U2 - 10.1103/PhysRevLett.130.133604

DO - 10.1103/PhysRevLett.130.133604

M3 - Letter

C2 - 37067306

VL - 130

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 13

M1 - 133604

ER -

ID: 344975673