Endogenous glucagon-like peptide- 1 and 2 are essential for regeneration after acute intestinal injury in mice
Research output: Contribution to journal › Journal article › Research › peer-review
Documents
- Endogenous glucagon-like peptide- 1 and 2 are essential for regeneration after acute intestinal injury in mice
Final published version, 0.98 MB, PDF document
OBJECTIVE: Mucositis is a side effect of chemotherapy seen in the digestive tract, with symptoms including pain, diarrhoea, inflammation and ulcerations. Our aim was to investigate whether endogenous glucagon-like peptide -1 and -2 (GLP-1 and GLP-2) are implicated in intestinal healing after chemotherapy-induced mucositis.
DESIGN: We used a transgenic mouse model Tg(GCG.DTR)(Tg) expressing the human diphtheria toxin receptor in the proglucagon-producing cells. Injections with diphtheria toxin ablated the GLP-1 and GLP-2 producing L-cells in Tg mice with no effect in wild-type (WT) mice. Mice were injected with 5-fluorouracil or saline and received vehicle, exendin-4, teduglutide (gly2-GLP-2), or exendin-4/teduglutide in combination. The endpoints were body weight change, small intestinal weight, morphology, histological scoring of mucositis and myeloperoxidase levels.
RESULTS: Ablation of L-cells led to impaired GLP-2 secretion; increased loss of body weight; lower small intestinal weight; lower crypt depth, villus height and mucosal area; and increased the mucositis severity score in mice given 5-fluorouracil. WT mice showed compensatory hyperproliferation as a sign of regeneration in the recovery phase. Co-treatment with exendin-4 and teduglutide rescued the body weight of the Tg mice and led to a hyperproliferation in the small intestine, whereas single treatment was less effective.
CONCLUSION: The ablation of L-cells leads to severe mucositis and insufficient intestinal healing, shown by severe body weight loss and lack of compensatory hyperproliferation in the recovery phase. Co-treatment with exendin-4 and teduglutide could prevent this. Because both peptides were needed, we can conclude that both GLP-1 and GLP-2 are essential for intestinal healing in mice.
Original language | English |
---|---|
Article number | e0198046 |
Journal | PLoS ONE |
Volume | 13 |
Issue number | 6 |
Pages (from-to) | 1-14 |
ISSN | 1932-6203 |
DOIs | |
Publication status | Published - 2018 |
Number of downloads are based on statistics from Google Scholar and www.ku.dk
ID: 197962015