Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1. / Sørensen, Christiane E.; Trauzold, Anna; Christensen, Nynne M.; Tawfik, Doaa; Szczepanowski, Monika; Novak, Ivana.

I: Pflügers Archiv - European Journal of Physiology, Bind 475, 2023.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Sørensen, CE, Trauzold, A, Christensen, NM, Tawfik, D, Szczepanowski, M & Novak, I 2023, 'Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1', Pflügers Archiv - European Journal of Physiology, bind 475. https://doi.org/10.1007/s00424-022-02782-9

APA

Sørensen, C. E., Trauzold, A., Christensen, N. M., Tawfik, D., Szczepanowski, M., & Novak, I. (2023). Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1. Pflügers Archiv - European Journal of Physiology, 475. https://doi.org/10.1007/s00424-022-02782-9

Vancouver

Sørensen CE, Trauzold A, Christensen NM, Tawfik D, Szczepanowski M, Novak I. Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1. Pflügers Archiv - European Journal of Physiology. 2023;475. https://doi.org/10.1007/s00424-022-02782-9

Author

Sørensen, Christiane E. ; Trauzold, Anna ; Christensen, Nynne M. ; Tawfik, Doaa ; Szczepanowski, Monika ; Novak, Ivana. / Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1. I: Pflügers Archiv - European Journal of Physiology. 2023 ; Bind 475.

Bibtex

@article{2f29b8639aed495ca146bcf2d48425ac,
title = "Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1",
abstract = "Mechanisms of synergistic agonist stimulation and modulation of the electrochemical driving force for anion secretion are still not fully explored in human pancreatic duct epithelial cells. The first objective of this study was therefore to test whether combined agonist stimulation augments anion transport responses in the Capan-1 monolayer model of human pancreatic duct epithelium. The second objective was to test the influence of H+,K+-ATPase inhibition on anion transport in Capan-1 monolayers. The third objective was to analyze the expression and function of K+ channels in Capan-1, which could support anion secretion and cooperate with H+,K+-ATPases in pH and potassium homeostasis. The human pancreatic adenocarcinoma cell line Capan-1 was cultured conventionally or as polarized monolayers that were analyzed by Ussing chamber electrophysiological recordings. Single-cell intracellular calcium was assayed with Fura-2. mRNA isolated from Capan-1 was analyzed by use of the nCounter assay or RT-PCR. Protein expression was assessed by immunofluorescence and western blot analyses. Combined stimulation with different physiological agonists enhanced anion transport responses compared to single agonist stimulation. The responsiveness of Capan-1 cells to histamine was also revealed in these experiments. The H+,K+-ATPase inhibitor omeprazole reduced carbachol- and riluzole-induced anion transport responses. Transcript analyses revealed abundant TASK-2, TWIK-1, TWIK-2, TASK-5, KCa3.1, and KCNQ1 mRNA expression. KCNE1 mRNA and TREK-1, TREK-2, TASK-2, and KCNQ1 protein expression were also shown. This study shows that the Capan-1 model recapitulates key physiological aspects of a bicarbonate-secreting epithelium and constitutes a valuable model for functional studies on human pancreatic duct epithelium.",
keywords = "H,K-ATPase, Histamine, K2P channels, Omeprazole, Pancreas, Riluzole",
author = "S{\o}rensen, {Christiane E.} and Anna Trauzold and Christensen, {Nynne M.} and Doaa Tawfik and Monika Szczepanowski and Ivana Novak",
note = "Publisher Copyright: {\textcopyright} 2022, The Author(s).",
year = "2023",
doi = "10.1007/s00424-022-02782-9",
language = "English",
volume = "475",
journal = "Pfl{\"u}gers Archiv - European Journal of Physiology",
issn = "0031-6768",
publisher = "Springer",

}

RIS

TY - JOUR

T1 - Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1

AU - Sørensen, Christiane E.

AU - Trauzold, Anna

AU - Christensen, Nynne M.

AU - Tawfik, Doaa

AU - Szczepanowski, Monika

AU - Novak, Ivana

N1 - Publisher Copyright: © 2022, The Author(s).

PY - 2023

Y1 - 2023

N2 - Mechanisms of synergistic agonist stimulation and modulation of the electrochemical driving force for anion secretion are still not fully explored in human pancreatic duct epithelial cells. The first objective of this study was therefore to test whether combined agonist stimulation augments anion transport responses in the Capan-1 monolayer model of human pancreatic duct epithelium. The second objective was to test the influence of H+,K+-ATPase inhibition on anion transport in Capan-1 monolayers. The third objective was to analyze the expression and function of K+ channels in Capan-1, which could support anion secretion and cooperate with H+,K+-ATPases in pH and potassium homeostasis. The human pancreatic adenocarcinoma cell line Capan-1 was cultured conventionally or as polarized monolayers that were analyzed by Ussing chamber electrophysiological recordings. Single-cell intracellular calcium was assayed with Fura-2. mRNA isolated from Capan-1 was analyzed by use of the nCounter assay or RT-PCR. Protein expression was assessed by immunofluorescence and western blot analyses. Combined stimulation with different physiological agonists enhanced anion transport responses compared to single agonist stimulation. The responsiveness of Capan-1 cells to histamine was also revealed in these experiments. The H+,K+-ATPase inhibitor omeprazole reduced carbachol- and riluzole-induced anion transport responses. Transcript analyses revealed abundant TASK-2, TWIK-1, TWIK-2, TASK-5, KCa3.1, and KCNQ1 mRNA expression. KCNE1 mRNA and TREK-1, TREK-2, TASK-2, and KCNQ1 protein expression were also shown. This study shows that the Capan-1 model recapitulates key physiological aspects of a bicarbonate-secreting epithelium and constitutes a valuable model for functional studies on human pancreatic duct epithelium.

AB - Mechanisms of synergistic agonist stimulation and modulation of the electrochemical driving force for anion secretion are still not fully explored in human pancreatic duct epithelial cells. The first objective of this study was therefore to test whether combined agonist stimulation augments anion transport responses in the Capan-1 monolayer model of human pancreatic duct epithelium. The second objective was to test the influence of H+,K+-ATPase inhibition on anion transport in Capan-1 monolayers. The third objective was to analyze the expression and function of K+ channels in Capan-1, which could support anion secretion and cooperate with H+,K+-ATPases in pH and potassium homeostasis. The human pancreatic adenocarcinoma cell line Capan-1 was cultured conventionally or as polarized monolayers that were analyzed by Ussing chamber electrophysiological recordings. Single-cell intracellular calcium was assayed with Fura-2. mRNA isolated from Capan-1 was analyzed by use of the nCounter assay or RT-PCR. Protein expression was assessed by immunofluorescence and western blot analyses. Combined stimulation with different physiological agonists enhanced anion transport responses compared to single agonist stimulation. The responsiveness of Capan-1 cells to histamine was also revealed in these experiments. The H+,K+-ATPase inhibitor omeprazole reduced carbachol- and riluzole-induced anion transport responses. Transcript analyses revealed abundant TASK-2, TWIK-1, TWIK-2, TASK-5, KCa3.1, and KCNQ1 mRNA expression. KCNE1 mRNA and TREK-1, TREK-2, TASK-2, and KCNQ1 protein expression were also shown. This study shows that the Capan-1 model recapitulates key physiological aspects of a bicarbonate-secreting epithelium and constitutes a valuable model for functional studies on human pancreatic duct epithelium.

KW - H,K-ATPase

KW - Histamine

KW - K2P channels

KW - Omeprazole

KW - Pancreas

KW - Riluzole

U2 - 10.1007/s00424-022-02782-9

DO - 10.1007/s00424-022-02782-9

M3 - Journal article

C2 - 36534232

AN - SCOPUS:85144185770

VL - 475

JO - Pflügers Archiv - European Journal of Physiology

JF - Pflügers Archiv - European Journal of Physiology

SN - 0031-6768

ER -

ID: 332614373