Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot. / Churchill, H O H; Kuemmeth, Ferdinand; Harlow, J W; Bestwick, A J; Rashba, E I; Flensberg, K; Stwertka, C H; Taychatanapat, T; Watson, S K; Marcus, C M.

I: Physical Review Letters, Bind 102, Nr. 16, 22.04.2009, s. 166802.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Churchill, HOH, Kuemmeth, F, Harlow, JW, Bestwick, AJ, Rashba, EI, Flensberg, K, Stwertka, CH, Taychatanapat, T, Watson, SK & Marcus, CM 2009, 'Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot', Physical Review Letters, bind 102, nr. 16, s. 166802. https://doi.org/10.1103/PhysRevLett.102.166802

APA

Churchill, H. O. H., Kuemmeth, F., Harlow, J. W., Bestwick, A. J., Rashba, E. I., Flensberg, K., Stwertka, C. H., Taychatanapat, T., Watson, S. K., & Marcus, C. M. (2009). Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot. Physical Review Letters, 102(16), 166802. https://doi.org/10.1103/PhysRevLett.102.166802

Vancouver

Churchill HOH, Kuemmeth F, Harlow JW, Bestwick AJ, Rashba EI, Flensberg K o.a. Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot. Physical Review Letters. 2009 apr 22;102(16):166802. https://doi.org/10.1103/PhysRevLett.102.166802

Author

Churchill, H O H ; Kuemmeth, Ferdinand ; Harlow, J W ; Bestwick, A J ; Rashba, E I ; Flensberg, K ; Stwertka, C H ; Taychatanapat, T ; Watson, S K ; Marcus, C M. / Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot. I: Physical Review Letters. 2009 ; Bind 102, Nr. 16. s. 166802.

Bibtex

@article{1b8a5f05679a4a878db0d305ad948246,
title = "Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot",
abstract = "We use charge sensing of Pauli blockade (including spin and isospin) in a two-electron 13C nanotube double quantum dot to measure relaxation and dephasing times. The relaxation time T1 first decreases with a parallel magnetic field and then goes through a minimum in a field of 1.4 T. We attribute both results to the spin-orbit-modified electronic spectrum of carbon nanotubes, which at high field enhances relaxation due to bending-mode phonons. The inhomogeneous dephasing time T2* is consistent with previous data on hyperfine coupling strength in 13C nanotubes.",
author = "Churchill, {H O H} and Ferdinand Kuemmeth and Harlow, {J W} and Bestwick, {A J} and Rashba, {E I} and K Flensberg and Stwertka, {C H} and T Taychatanapat and Watson, {S K} and Marcus, {C M}",
year = "2009",
month = apr,
day = "22",
doi = "10.1103/PhysRevLett.102.166802",
language = "English",
volume = "102",
pages = "166802",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "16",

}

RIS

TY - JOUR

T1 - Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot

AU - Churchill, H O H

AU - Kuemmeth, Ferdinand

AU - Harlow, J W

AU - Bestwick, A J

AU - Rashba, E I

AU - Flensberg, K

AU - Stwertka, C H

AU - Taychatanapat, T

AU - Watson, S K

AU - Marcus, C M

PY - 2009/4/22

Y1 - 2009/4/22

N2 - We use charge sensing of Pauli blockade (including spin and isospin) in a two-electron 13C nanotube double quantum dot to measure relaxation and dephasing times. The relaxation time T1 first decreases with a parallel magnetic field and then goes through a minimum in a field of 1.4 T. We attribute both results to the spin-orbit-modified electronic spectrum of carbon nanotubes, which at high field enhances relaxation due to bending-mode phonons. The inhomogeneous dephasing time T2* is consistent with previous data on hyperfine coupling strength in 13C nanotubes.

AB - We use charge sensing of Pauli blockade (including spin and isospin) in a two-electron 13C nanotube double quantum dot to measure relaxation and dephasing times. The relaxation time T1 first decreases with a parallel magnetic field and then goes through a minimum in a field of 1.4 T. We attribute both results to the spin-orbit-modified electronic spectrum of carbon nanotubes, which at high field enhances relaxation due to bending-mode phonons. The inhomogeneous dephasing time T2* is consistent with previous data on hyperfine coupling strength in 13C nanotubes.

U2 - 10.1103/PhysRevLett.102.166802

DO - 10.1103/PhysRevLett.102.166802

M3 - Journal article

VL - 102

SP - 166802

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 16

ER -

ID: 44225319