Pyrogenic organic matter as a nitrogen source to microbes and plants following fire in an Arctic heath tundra

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 2,39 MB, PDF-dokument

In recent years, wildfire frequency and severity has increased in the Arctic tundra regions due to climate change. Pyrogenic organic matter (PyOM) is a product of incomplete combustion of biomass containing nutrients such as nitrogen (N), and is expected to affect ecosystem N cycling during a post-fire recovery period. We investigated effects of fire on soil biogeochemical cycles with a focus on pyrogenic N turnover over two subsequent growing seasons, combined with and without summer warming, in an Arctic heath tundra, West Greenland. The summer warming was achieved by deployment of open top chambers (OTCs). We simulated an in situ tundra fire by removing vegetation and litter, and scorching/heating soil surface followed by the addition of N-15-labelled PyOM (derived from aboveground biomass and litter) to the soil surface in plots with and without summer warming. A darker surface after the simulated fire resulted in an increase of 1.3 degrees C in soil temperature at 5-cm depth over the growing seasons. The fire also caused a nine-fold increase in soil NH4+-N and three-fold increase in soil NO3--N concentrations at 7-cm depth after two years. Tracing the fate of N-15-labelled PyOM, 21 days after its application, showed low N-15 recovery in microbial biomass (0.4%) and total dissolved N (TDN) pools (0.01%). Microbial and root N-15 recovery increased two-fold and 15-fold after one year, respectively, and TDN N-15 recovery increased two-fold after two years, suggesting that relatively recalcitrant N of PyOM can be partly transformed into plantavailable forms over time. Root and TDN N-15 recovery was also significantly higher after two years of summer warming than under ambient temperature conditions, suggesting that summer warming can enhance availability of PyOM-N for recovering plants after the fire. Hence, we conclude that fire-induced PyOM can act as an N source for plant recovery in this Arctic tundra ecosystem for years after the fire, and this N source will become increasingly important in a future warmer climate.

OriginalsprogEngelsk
Artikelnummer108699
TidsskriftSoil Biology & Biochemistry
Vol/bind170
Antal sider9
ISSN0038-0717
DOI
StatusUdgivet - 2022

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 316556801