Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › fagfællebedømt
Standard
Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum. / Jansen, Willemijn J.; Janssen, Olin; Tijms, Betty M.; Vos, Stephanie J.B.; Ossenkoppele, Rik; Visser, Pieter Jelle; Aarsland, Dag; Alcolea, Daniel; Altomare, Daniele; Von Arnim, Christine; Baiardi, Simone; Baldeiras, Ines; Barthel, Henryk; Bateman, Randall J.; Van Berckel, Bart; Binette, Alexa Pichet; Blennow, Kaj; Boada, Merce; Boecker, Henning; Bottlaender, Michel; Den Braber, Anouk; Brooks, David J.; Van Buchem, Mark A.; Camus, Vincent; Carill, Jose Manuel; Cerman, Jiri; Chen, Kewei; Chételat, Gaël; Chipi, Elena; Cohen, Ann D.; Daniels, Alisha; Delarue, Marion; Didic, Mira; Drzezga, Alexander; Dubois, Bruno; Eckerström, Marie; Ekblad, Laura L.; Engelborghs, Sebastiaan; Epelbaum, Stéphane; Fagan, Anne M.; Fan, Yong; Fladby, Tormod; Fleisher, Adam S.; Van Der Flier, Wiesje M.; Förster, Stefan; Fortea, Juan; Frederiksen, Kristian Steen; Freund-Levi, Yvonne; Frings, Lars; Frisoni, Giovanni B.; Fröhlich, Lutz; Gabryelewicz, Tomasz; Gertz, Hermann Josef; Gill, Kiran Dip; Gkatzima, Olymbia; Gómez-Tortosa, Estrella; Grimmer, Timo; Guedj, Eric; Habeck, Christian G.; Hampel, Harald; Handels, Ron; Hansson, Oskar; Hausner, Lucrezia; Hellwig, Sabine; Heneka, Michael T.; Herukka, Sanna Kaisa; Hildebrandt, Helmut; Hodges, John; Hort, Jakub; Huang, Chin Chang; Iriondo, Ane Juaristi; Itoh, Yoshiaki; Ivanoiu, Adrian; Jagust, William J.; Jessen, Frank; Johannsen, Peter; Johnson, Keith A.; Kandimalla, Ramesh; Kapaki, Elisabeth N.; Kern, Silke; Kilander, Lena; Klimkowicz-Mrowiec, Aleksandra; Klunk, William E.; Koglin, Norman; Kornhuber, Johannes; Kramberger, Milica G.; Kuo, Hung Chou; Van Laere, Koen; Landau, Susan M.; Landeau, Brigitte; Lee, Dong Young; De Leon, Mony; Leyton, Cristian E.; Lin, Kun Ju; Lleó, Alberto; Löwenmark, Malin; Madsen, Karine; Maier, Wolfgang; Marcusson, Jan; Marquié, Marta; Martinez-Lage, Pablo; Maserejian, Nancy; Mattsson, Niklas; De Mendonça, Alexandre; Meyer, Philipp T.; Miller, Bruce L.; Minatani, Shinobu; Mintun, Mark A.; Mok, Vincent C.T.; Molinuevo, Jose Luis; Morbelli, Silvia Daniela; Morris, John C.; Mroczko, Barbara; Na, Duk L.; Newberg, Andrew; Nobili, Flavio; Nordberg, Agneta; Olde Rikkert, Marcel G.M.; De Oliveira, Catarina Resende; Olivieri, Pauline; Orellana, Adela; Paraskevas, George; Parchi, Piero; Pardini, Matteo; Parnetti, Lucilla; Peters, Oliver; Poirier, Judes; Popp, Julius; Prabhakar, Sudesh; Rabinovici, Gil D.; Ramakers, Inez H.; Rami, Lorena; Reiman, Eric M.; Rinne, Juha O.; Rodrigue, Karen M.; Rodríguez-Rodriguez, Eloy; Roe, Catherine M.; Rosa-Neto, Pedro; Rosen, Howard J.; Rot, Uros; Rowe, Christopher C.; Rüther, Eckart; Ruiz, Agustín; Sabri, Osama; Sakhardande, Jayant; Sánchez-Juan, Pascual; Sando, Sigrid Botne; Santana, Isabel; Sarazin, Marie; Scheltens, Philip; Schröder, Johannes; Selnes, Per; Seo, Sang Won; Silva, Dina; Skoog, Ingmar; Snyder, Peter J.; Soininen, Hilkka; Sollberger, Marc; Sperling, Reisa A.; Spiru, Luisa; Stern, Yaakov; Stomrud, Erik; Takeda, Akitoshi; Teichmann, Marc; Teunissen, Charlotte E.; Thompson, Louisa I.; Tomassen, Jori; Tsolaki, Magda; Vandenberghe, Rik; Verbeek, Marcel M.; Verhey, Frans R.J.; Villemagne, Victor; Villeneuve, Sylvia; Vogelgsang, Jonathan; Waldemar, Gunhild; Wallin, Anders; Wallin, Åsa K.; Wiltfang, Jens; Wolk, David A.; Yen, Tzu Chen; Zboch, Marzena; Zetterberg, Henrik.
I: JAMA Neurology, Bind 79, Nr. 3, 2022, s. 228-243.Publikation: Bidrag til tidsskrift › Tidsskriftartikel › fagfællebedømt
Harvard
APA
Vancouver
Author
Bibtex
}
RIS
TY - JOUR
T1 - Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum
AU - Jansen, Willemijn J.
AU - Janssen, Olin
AU - Tijms, Betty M.
AU - Vos, Stephanie J.B.
AU - Ossenkoppele, Rik
AU - Visser, Pieter Jelle
AU - Aarsland, Dag
AU - Alcolea, Daniel
AU - Altomare, Daniele
AU - Von Arnim, Christine
AU - Baiardi, Simone
AU - Baldeiras, Ines
AU - Barthel, Henryk
AU - Bateman, Randall J.
AU - Van Berckel, Bart
AU - Binette, Alexa Pichet
AU - Blennow, Kaj
AU - Boada, Merce
AU - Boecker, Henning
AU - Bottlaender, Michel
AU - Den Braber, Anouk
AU - Brooks, David J.
AU - Van Buchem, Mark A.
AU - Camus, Vincent
AU - Carill, Jose Manuel
AU - Cerman, Jiri
AU - Chen, Kewei
AU - Chételat, Gaël
AU - Chipi, Elena
AU - Cohen, Ann D.
AU - Daniels, Alisha
AU - Delarue, Marion
AU - Didic, Mira
AU - Drzezga, Alexander
AU - Dubois, Bruno
AU - Eckerström, Marie
AU - Ekblad, Laura L.
AU - Engelborghs, Sebastiaan
AU - Epelbaum, Stéphane
AU - Fagan, Anne M.
AU - Fan, Yong
AU - Fladby, Tormod
AU - Fleisher, Adam S.
AU - Van Der Flier, Wiesje M.
AU - Förster, Stefan
AU - Fortea, Juan
AU - Frederiksen, Kristian Steen
AU - Freund-Levi, Yvonne
AU - Frings, Lars
AU - Frisoni, Giovanni B.
AU - Fröhlich, Lutz
AU - Gabryelewicz, Tomasz
AU - Gertz, Hermann Josef
AU - Gill, Kiran Dip
AU - Gkatzima, Olymbia
AU - Gómez-Tortosa, Estrella
AU - Grimmer, Timo
AU - Guedj, Eric
AU - Habeck, Christian G.
AU - Hampel, Harald
AU - Handels, Ron
AU - Hansson, Oskar
AU - Hausner, Lucrezia
AU - Hellwig, Sabine
AU - Heneka, Michael T.
AU - Herukka, Sanna Kaisa
AU - Hildebrandt, Helmut
AU - Hodges, John
AU - Hort, Jakub
AU - Huang, Chin Chang
AU - Iriondo, Ane Juaristi
AU - Itoh, Yoshiaki
AU - Ivanoiu, Adrian
AU - Jagust, William J.
AU - Jessen, Frank
AU - Johannsen, Peter
AU - Johnson, Keith A.
AU - Kandimalla, Ramesh
AU - Kapaki, Elisabeth N.
AU - Kern, Silke
AU - Kilander, Lena
AU - Klimkowicz-Mrowiec, Aleksandra
AU - Klunk, William E.
AU - Koglin, Norman
AU - Kornhuber, Johannes
AU - Kramberger, Milica G.
AU - Kuo, Hung Chou
AU - Van Laere, Koen
AU - Landau, Susan M.
AU - Landeau, Brigitte
AU - Lee, Dong Young
AU - De Leon, Mony
AU - Leyton, Cristian E.
AU - Lin, Kun Ju
AU - Lleó, Alberto
AU - Löwenmark, Malin
AU - Madsen, Karine
AU - Maier, Wolfgang
AU - Marcusson, Jan
AU - Marquié, Marta
AU - Martinez-Lage, Pablo
AU - Maserejian, Nancy
AU - Mattsson, Niklas
AU - De Mendonça, Alexandre
AU - Meyer, Philipp T.
AU - Miller, Bruce L.
AU - Minatani, Shinobu
AU - Mintun, Mark A.
AU - Mok, Vincent C.T.
AU - Molinuevo, Jose Luis
AU - Morbelli, Silvia Daniela
AU - Morris, John C.
AU - Mroczko, Barbara
AU - Na, Duk L.
AU - Newberg, Andrew
AU - Nobili, Flavio
AU - Nordberg, Agneta
AU - Olde Rikkert, Marcel G.M.
AU - De Oliveira, Catarina Resende
AU - Olivieri, Pauline
AU - Orellana, Adela
AU - Paraskevas, George
AU - Parchi, Piero
AU - Pardini, Matteo
AU - Parnetti, Lucilla
AU - Peters, Oliver
AU - Poirier, Judes
AU - Popp, Julius
AU - Prabhakar, Sudesh
AU - Rabinovici, Gil D.
AU - Ramakers, Inez H.
AU - Rami, Lorena
AU - Reiman, Eric M.
AU - Rinne, Juha O.
AU - Rodrigue, Karen M.
AU - Rodríguez-Rodriguez, Eloy
AU - Roe, Catherine M.
AU - Rosa-Neto, Pedro
AU - Rosen, Howard J.
AU - Rot, Uros
AU - Rowe, Christopher C.
AU - Rüther, Eckart
AU - Ruiz, Agustín
AU - Sabri, Osama
AU - Sakhardande, Jayant
AU - Sánchez-Juan, Pascual
AU - Sando, Sigrid Botne
AU - Santana, Isabel
AU - Sarazin, Marie
AU - Scheltens, Philip
AU - Schröder, Johannes
AU - Selnes, Per
AU - Seo, Sang Won
AU - Silva, Dina
AU - Skoog, Ingmar
AU - Snyder, Peter J.
AU - Soininen, Hilkka
AU - Sollberger, Marc
AU - Sperling, Reisa A.
AU - Spiru, Luisa
AU - Stern, Yaakov
AU - Stomrud, Erik
AU - Takeda, Akitoshi
AU - Teichmann, Marc
AU - Teunissen, Charlotte E.
AU - Thompson, Louisa I.
AU - Tomassen, Jori
AU - Tsolaki, Magda
AU - Vandenberghe, Rik
AU - Verbeek, Marcel M.
AU - Verhey, Frans R.J.
AU - Villemagne, Victor
AU - Villeneuve, Sylvia
AU - Vogelgsang, Jonathan
AU - Waldemar, Gunhild
AU - Wallin, Anders
AU - Wallin, Åsa K.
AU - Wiltfang, Jens
AU - Wolk, David A.
AU - Yen, Tzu Chen
AU - Zboch, Marzena
AU - Zetterberg, Henrik
N1 - Publisher Copyright: © 2022 American Medical Association. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Importance: One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design. Objective: To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates. Design, Setting, and Participants: This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria. Exposures: Alzheimer disease biomarkers detected on PET or in CSF. Main Outcomes and Measures: Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations. Results: Among the 19097 participants (mean [SD] age, 69.1 [9.8] years; 10148 women [53.1%]) included, 10139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P =.04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P =.004), subjective cognitive decline (9%; 95% CI, 3%-15%; P =.005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P =.004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P =.18). Conclusions and Relevance: This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
AB - Importance: One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design. Objective: To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates. Design, Setting, and Participants: This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria. Exposures: Alzheimer disease biomarkers detected on PET or in CSF. Main Outcomes and Measures: Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations. Results: Among the 19097 participants (mean [SD] age, 69.1 [9.8] years; 10148 women [53.1%]) included, 10139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P =.04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P =.004), subjective cognitive decline (9%; 95% CI, 3%-15%; P =.005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P =.004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P =.18). Conclusions and Relevance: This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
U2 - 10.1001/jamaneurol.2021.5216
DO - 10.1001/jamaneurol.2021.5216
M3 - Journal article
C2 - 35099509
AN - SCOPUS:85124123668
VL - 79
SP - 228
EP - 243
JO - JAMA Neurology
JF - JAMA Neurology
SN - 2168-6149
IS - 3
ER -
ID: 296259231