Optimization of hemoglobin encapsulation within plga nanoparticles and their investigation as potential oxygen carriers

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 2,24 MB, PDF-dokument

Hemoglobin (Hb)-based oxygen carriers (HBOCs) display the excellent oxygen-carrying properties of red blood cells, while overcoming some of the limitations of donor blood. Various encapsulation platforms have been explored to prepare HBOCs which aim to avoid or minimize the adverse effects caused by the administration of free Hb. Herein, we entrapped Hb within a poly(lac-tide-co-glycolide) (PLGA) core, prepared by the double emulsion solvent evaporation method. We study the effect of the concentrations of Hb, PLGA, and emulsifier on the size, polydispersity (PDI), loading capacity (LC), and entrapment efficiency (EE) of the resulting Hb-loaded PLGA nanoparti-cles (HbNPs). Next, the ability of the HbNPs to reversibly bind and release oxygen was thoroughly evaluated. When needed, trehalose, a well-known protein stabilizer that has never been explored for the fabrication of HBOCs, was incorporated to preserve Hb’s functionality. The optimized formulation had a size of 344 nm, a PDI of 0.172, a LC of 26.9%, and an EE of 40.7%. The HbNPs were imaged by microscopy and were further characterized by FTIR and CD spectroscopy to assess their chemical composition and structure. Finally, the ability of the encapsulated Hb to bind and release oxygen over several rounds was demonstrated, showing the preservation of its functionality.

OriginalsprogEngelsk
Artikelnummer1958
TidsskriftPharmaceutics
Vol/bind13
Udgave nummer11
Antal sider19
ISSN1999-4923
DOI
StatusUdgivet - nov. 2021

Bibliografisk note

Funding Information:
Funding: This research was funded by the Danish Council for Independent research, grant number 0136-00052B.

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

ID: 286857025