Long-term temporal patterns in ecosystem carbon flux components and overall balance in a heathland ecosystem
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Standard
Long-term temporal patterns in ecosystem carbon flux components and overall balance in a heathland ecosystem. / Li, Qiaoyan; Larsen, Klaus Steenberg; Kopittke, Gillian; van Loon, Emiel; Tietema, Albert.
I: Science of the Total Environment, Bind 875, 162658, 2023.Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Harvard
APA
Vancouver
Author
Bibtex
}
RIS
TY - JOUR
T1 - Long-term temporal patterns in ecosystem carbon flux components and overall balance in a heathland ecosystem
AU - Li, Qiaoyan
AU - Larsen, Klaus Steenberg
AU - Kopittke, Gillian
AU - van Loon, Emiel
AU - Tietema, Albert
N1 - Publisher Copyright: © 2023 The Authors
PY - 2023
Y1 - 2023
N2 - Terrestrial ecosystems have strong feedback to atmospheric CO2 concentration and climate change. However, the long-term whole life cycle dynamics of ecosystem carbon (C) fluxes and overall balance in some ecosystem types, such as heathland ecosystems, have not been thoroughly explored. We studied the changes in ecosystem CO2 flux components and overall C balance over a full ecosystem lifecycle in stands of Calluna vulgaris (L.) Hull by using a chronosequence of 0, 12, 19 and 28 years after vegetation cutting. Overall, the ecosystem C balance was highly nonlinear over time and exhibited a sinusoidal-like curvature of C sink/source change over the three-decade timescale. After cutting, plant-related C flux components of gross photosynthesis (PG) aboveground autotrophic respiration (Raa) and belowground autotrophic respiration (Rba) were higher at the young age (12 years) than at middle (19 years) and old (28 years) ages. The young ecosystem was a C sink (12 years: −0.374 kg C m−2 year−1) while it became a C source with aging (19 years: 0.218 kg C m−2 year−1) and when dying (28 years: 0.089 kg C m−2 year−1). The post-cutting C compensation point was observed after four years, while the cumulative C loss in the period after cutting had been compensated by an equal amount of C uptake after seven years. Annual ecosystem C payback from the ecosystem to the atmosphere started after 16 years. This information may be used directly for optimizing vegetation management practices for maximal ecosystem C uptake capacity. Our study highlights that whole life cycle observational data of changes in C fluxes and balance in ecosystems are important and the ecosystem model needs to take the successional stage and vegetation age into account when projecting component C fluxes, ecosystem C balance, and overall feedback to climate change.
AB - Terrestrial ecosystems have strong feedback to atmospheric CO2 concentration and climate change. However, the long-term whole life cycle dynamics of ecosystem carbon (C) fluxes and overall balance in some ecosystem types, such as heathland ecosystems, have not been thoroughly explored. We studied the changes in ecosystem CO2 flux components and overall C balance over a full ecosystem lifecycle in stands of Calluna vulgaris (L.) Hull by using a chronosequence of 0, 12, 19 and 28 years after vegetation cutting. Overall, the ecosystem C balance was highly nonlinear over time and exhibited a sinusoidal-like curvature of C sink/source change over the three-decade timescale. After cutting, plant-related C flux components of gross photosynthesis (PG) aboveground autotrophic respiration (Raa) and belowground autotrophic respiration (Rba) were higher at the young age (12 years) than at middle (19 years) and old (28 years) ages. The young ecosystem was a C sink (12 years: −0.374 kg C m−2 year−1) while it became a C source with aging (19 years: 0.218 kg C m−2 year−1) and when dying (28 years: 0.089 kg C m−2 year−1). The post-cutting C compensation point was observed after four years, while the cumulative C loss in the period after cutting had been compensated by an equal amount of C uptake after seven years. Annual ecosystem C payback from the ecosystem to the atmosphere started after 16 years. This information may be used directly for optimizing vegetation management practices for maximal ecosystem C uptake capacity. Our study highlights that whole life cycle observational data of changes in C fluxes and balance in ecosystems are important and the ecosystem model needs to take the successional stage and vegetation age into account when projecting component C fluxes, ecosystem C balance, and overall feedback to climate change.
KW - Carbon balance
KW - Chronosequence
KW - Cumulative carbon balance
KW - Ecosystem CO fluxes
KW - Heathland ecosystem
U2 - 10.1016/j.scitotenv.2023.162658
DO - 10.1016/j.scitotenv.2023.162658
M3 - Journal article
C2 - 36894076
AN - SCOPUS:85150018358
VL - 875
JO - Science of the Total Environment
JF - Science of the Total Environment
SN - 0048-9697
M1 - 162658
ER -
ID: 342667899