Installation of O-glycan sulfation capacities in human HEK293 cells for display of sulfated mucins

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 2,87 MB, PDF-dokument

The human genome contains at least 35 genes that encode Golgi sulfotransferases that function in the secretory pathway, where they are involved in decorating glycosaminoglycans, glycolipids, and glycoproteins with sulfate groups. Although a number of important interactions by proteins such as Selectins, Galectins, and Siglecs are thought to mainly rely on sulfated O-glycans, our insight into the sulfotransferases that modify these glycoproteins, and in particular GalNAc-type O-glycoproteins, is limited. Moreover, sulfated mucins appear to accumulate in respiratory diseases, arthritis, and cancer. To explore further the genetic and biosynthetic regulation of sulfated O-glycans, here we expanded a cell-based glycan array in the human HEK293 cell line with sulfation capacities. We stably engineered O-glycan sulfation capacities in HEK293 cells by site-directed knock-in of sulfotransferase genes in combination with knockout of genes to eliminate endogenous O-glycan branching (core2 synthase gene GCNT1) and/or sialylation capacities in order to provide simplified substrates (core1 Galβ1-3GalNAcα1-O-Ser/Thr) for the introduced sulfotransferases. Expression of the galactose 3O-sulfotransferase 2 (GAL3ST2) in HEK293 cells resulted in sulfation of core1 and core2 O-glycans, whereas expression of galactose 3O-sulfotransferase 4 (GAL3ST4) resulted in sulfation of core1 only. We used the engineered cell library to dissect the binding specificity of galectin-4 and confirmed binding to the 3-O-sulfo-core1 O-glycan. This is a first step towards expanding the emerging cell-based glycan arrays with the important sulfation modification for display and production of glycoconjugates with sulfated O-glycans.

OriginalsprogEngelsk
Artikelnummer101382
TidsskriftJournal of Biological Chemistry
Vol/bind298
Udgave nummer2
ISSN0021-9258
DOI
StatusUdgivet - 2022

Bibliografisk note

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 290599197