Impact of Molecular Surface Diffusion on the Physical Stability of Co-Amorphous Systems

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Accepteret manuskript, 873 KB, PDF-dokument

In this study, surface diffusion of l-aspartic acid-carvedilol (ASP-CAR) co-amorphous systems at different ASP concentrations is measured and correlated with their physical stability. ASP-CAR films at ASP concentrations of 1-5% (w/w) were prepared by a newly developed method based on a vacuum compression molding process. Surface diffusion measurements were conducted on these systems based on the surface grating decay method using atomic force microscopy (AFM). The results demonstrate that a small amount of ASP (i.e., ≤ 5% w/w) in the co-amorphous systems could significantly slow down the grating decay process compared with that of pure amorphous CAR, indicating a reduced surface diffusion of CAR molecules. The decay time gradually increased in co-amorphous systems with increasing ASP concentration from 1 to 5% (w/w), with the longest observed decay time of around 800 h for the 5%ASP-CAR system, which was more than 200 times longer compared to the decay time of pure amorphous CAR (approximately 3 h). A good correlation between the decay constants of the pure amorphous CAR and co-amorphous films at ASP concentrations of 1-5% (w/w) and the physical stability of corresponding amorphous powder samples was found. Overall, this study provides a new method to prepare co-amorphous films for surface property measurements and reveals the impact of surface diffusion on the physical stability of co-amorphous systems.

OriginalsprogEngelsk
TidsskriftMolecular Pharmaceutics
Vol/bind19
Udgave nummer4
Sider (fra-til)1183-1190
ISSN1543-8384
DOI
StatusUdgivet - 2022

Bibliografisk note

Publisher Copyright:
© 2022 American Chemical Society.

ID: 305394910