High-resolution imaging of labile phosphorus and its relationship with iron redox state in lake sediments

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

A thorough understanding of the labile status and dynamics of phosphorus (P) and iron (Fe) across the sediment-water interface (SWI) is essential for managing internal P release in eutrophic lakes. Fe-coupled inactivation of P in sediments is an important factor which affects internal P release in freshwater lakes. In this study, two in-situ high-resolution diffusive gradients in thin films (DGT) techniques, Zr-Oxide DGT and ZrO-Chelex DGT, were used to investigate the release characteristics of P from sediments in a large freshwater lake (Dongting Lake, China; area of 2691 km(2)) experiencing a regional summer algal bloom. Two-dimensional distributions of labile P in sediments were imaged with the Zr-Oxide DGT without destruction of the original structure of the sediment layer at four sites of the lake. The concentration of DGT-labile P in the sediments, ranging from 0.007 to 0.206 mg L(-1), was highly heterogeneous across the profiles. The values of apparent diffusion flux (Fd) and release flux (Fr) of P varied between -0.027-0.197 mg m(-2) d(-1) and 0.037-0.332 mg m(-2) d(-1), respectively. Labile P showed a high and positive correlation (p < 0.01) with labile Fe(II) in the profiles, providing high-resolution evidence for the key role of Fe-redox cycling in labile P variation in sediments.

OriginalsprogEngelsk
TidsskriftEnvironmental Pollution
Vol/bind219
Sider (fra-til)466-474
Antal sider9
ISSN0269-7491
DOI
StatusUdgivet - 2016

ID: 169107145