Growth Factors Do Not Improve Muscle Function in Young or Adult mdx Mice

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 2,88 MB, PDF-dokument

  • Tue L. Nielsen
  • Tessa M. Hornsyld
  • Tomàs Pinós
  • Camilla Brolin
  • Vissing, John
  • Thomas O. Krag

Muscular dystrophies constitute a broad group of genetic disorders leading to muscle wasting. We have previously demonstrated that treating a muscular atrophy mouse model with growth factors resulted in increased muscle mass. In the present study, we treated the Duchenne mouse model mdx for 12 weeks with myogenic growth factors peri-and post-onset of muscular degeneration to explore the effects in the oxidative muscle soleus and the glycolytic muscle extensor digitorum longus (EDL). We found no overall beneficial effect in the peri-onset group at the conclusion of the study. In the post-onset group, the functional improvement by means of electrophysiological examinations ex vivo was mostly confined to the soleus. EDL benefitted from the treatment on a molecular level but did not improve functionally. Histopathology revealed signs of inflammation at the end of treatment. In conclusion, the growth factor cocktail failed to improve the mdx on a functional level.

OriginalsprogEngelsk
Artikelnummer304
TidsskriftBiomedicines
Vol/bind10
Udgave nummer2
ISSN2227-9059
DOI
StatusUdgivet - 2022

Bibliografisk note

Funding Information:
This work was supported by grants from the Lundbeck Foundation (Grant No. R140-2013-13370 to J.V. and T.O.K.), Novo Nordisk Foundation (Grant No. 8091 to J.V. and T.O.K.), AP M?ller Foundations (Grant No. 13-222 to T.O.K.), Instituto de Salud Carlos III y Fondos FEDER (FIS Project PI19/01313 to T.P.), and Augustinus Foundation (Grant No. 13-4153 to T.O.K.). None of the funding sources had any involvement in the study, data evaluation, or authoring of the manuscript.

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 291603531