Four weeks of normobaric "live high-train low" do not alter muscular or systemic capacity for maintaining pH and K+ homeostasis during intense exercise

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

It was investigated if athletes subjected to 4 wk of living in normobaric hypoxia (3,000 m; 16 h/day) while training at 800-1,300 m ["live high-train low" (LHTL)] increase muscular and systemic capacity for maintaining pH and K(+) homeostasis as well as intense exercise performance. The design was double-blind and placebo controlled. Mean power during 30-s all-out cycling was similar before and immediately after LHTL (650 ± 31 vs. 628 ± 32 W; n = 10) and placebo exposure (658 ± 22 vs. 660 ± 23 W; n = 6). Supporting the performance data, arterial plasma pH, lactate, and K(+) during submaximal and maximal exercise were also unaffected by the intervention in both groups. In addition, muscle buffer capacity (in mmol H(+)·kg dry wt(-1)·pH(-1)) was similar before and after in both the LHTL (140 ± 12 vs. 140 ± 16) and placebo group (145 ± 2 vs. 140 ± 3). The expression of sarcolemmal H(+) transporters (Na(+)/H(+) exchanger 1, monocarboxylate transporters 1 and 4), as well as expression of Na(+)-K(+) pump subunits-a(1), -a(2), and -ß(1) was also similar before and after the intervention. In conclusion, muscular and systemic capacity for maintaining pH and K(+) balance during exercise is similar before and after 4 wk of placebo-controlled normobaric LHTL. In accordance, 30-s all-out sprint ability was similar before and after LHTL.
OriginalsprogEngelsk
TidsskriftJournal of Applied Physiology
Vol/bind112
Udgave nummer12
Sider (fra-til)2027-2036
Antal sider10
ISSN8750-7587
DOI
StatusUdgivet - 2012

Bibliografisk note

CURIS 2012 5200 0067

ID: 38565516