Engineering highly functional thermostable proteins using ancestral sequence reconstruction

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Yosephin Gumulya
  • Jong-min Baek
  • Shun-jie Wun
  • Raine E. S. Thomson
  • Kurt L. Harris
  • Dominic J. B. Hunter
  • James B.Y.H. Behrendorff
  • Justyna Kulig
  • Shan Zheng
  • Xueming Wu
  • Bin Wu
  • Jeanette E. Stok
  • James J. De Voss
  • Gerhard Schenk
  • Ulrik Jurva
  • Shalini Andersson
  • Emre M. Isin
  • Mikael Bodén
  • Luke Guddat
  • Elizabeth M. J. Gillam
Commercial biocatalysis requires robust enzymes that can withstand elevated temperatures and long incubations. Ancestral reconstruction has shown that pre-Cambrian enzymes were often much more thermostable than extant forms. Here, we resurrect ancestral enzymes that withstand ~30 °C higher temperatures and ≥100 times longer incubations than their extant forms. This is demonstrated on animal cytochromes P450 that stereo- and regioselectively functionalize unactivated C–H bonds for the synthesis of valuable chemicals, and bacterial ketol-acid reductoisomerases that are used to make butanol-based biofuels. The vertebrate CYP3 P450 ancestor showed a 60T50 of 66 °C and enhanced solvent tolerance compared with the human drug-metabolizing CYP3A4, yet comparable activity towards a similarly broad range of substrates. The ancestral ketol-acid reductoisomerase showed an eight-fold higher specific activity than the cognate Escherichia coli form at 25 °C, which increased 3.5-fold at 50 °C. Thus, thermostable proteins can be devised using sequence data alone from even recent ancestors.
OriginalsprogEngelsk
TidsskriftNature Catalysis
Vol/bind1
Udgave nummer11
Sider (fra-til)878-888
ISSN2520-1158
DOI
StatusUdgivet - 2018
Eksternt udgivetJa

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 212167152