Avian influenza

Publikation: Bidrag til tidsskriftTidsskriftartikelForskning

Dokumenter

  • EFSA Panel on Animal Health and Welfare
  • Simon More
  • Dominique Bicout
  • Anette Bøtner
  • Andrew Butterworth
  • Paolo Calistri
  • Klaus Depner
  • Sandra Edwards
  • Bruno Garin-Bastuji
  • Margaret Good
  • Christian Gortázar Schmidt
  • Virginie Michel
  • Miguel Angel Miranda
  • Mohan Raj
  • Liisa Sihvonen
  • Hans Spoolder
  • Hans-Hermann Thulke
  • Antonio Velarde
  • Preben Willeberg
  • Christoph Winckler
  • Andrew Breed
  • Adam Brouwer
  • Matthieu Guillemain
  • Timm Harder
  • Isabella Monne
  • Helen Roberts
  • Francesca Baldinelli
  • Federica Barrucci
  • Chiara Fabris
  • Laura Martino
  • Olaf Mosbach-Schulz
  • Frank Verdonck
  • Joana Morgado
  • Jan Arend Stegeman
Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non-negligible risk of AI introduction. The transmission rate between animals within a flock is assessed to be higher for HPAIV than LPAIV. In very few cases, it could be proven that HPAI outbreaks were caused by intrinsic mutation of LPAIV to HPAIV but current knowledge does not allow a prediction as to if, and when this could occur. In gallinaceous poultry, passive surveillance through notification of suspicious clinical signs/mortality was identified as the most effective method for early detection of HPAI outbreaks. For effective surveillance in anseriform poultry, passive surveillance through notification of suspicious clinical signs/mortality needs to be accompanied by serological surveillance and/or a virological surveillance programme of birds found dead (bucket sampling). Serosurveillance is unfit for early warning of LPAI outbreaks at the individual holding level but could be effective in tracing clusters of LPAIV-infected holdings. In wild birds, passive surveillance is an appropriate method for HPAIV surveillance if the HPAIV infections are associated with mortality whereas active wild bird surveillance has a very low efficiency for detecting HPAIV. Experts estimated and emphasised the effect of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures.
OriginalsprogEngelsk
Artikelnummere04991
TidsskriftE F S A Journal
Vol/bind15
Udgave nummer10
Antal sider233
ISSN1831-4732
DOI
StatusUdgivet - 2017

    Forskningsområder

  • avian influenza, introduction, spread, mutagenesis, surveillance, biosecurity, zoning

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 184608221