AgNO3 sterilizes grains of barley (Hordeum vulgare) without inhibiting germination - a necessary tool for plant–microbiome research

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

Dokumenter

To understand and manipulate the interactions between plants and microorganisms, sterile seeds are a necessity. The seed microbiome (inside and surface microorganisms) is unknown for most plant species and seed-borne microorganisms can persist and transfer to the seedling and rhizosphere, thereby obscuring the effects that purposely introduced microorganisms have on plants. This necessitates that these unidentified, seed-borne microorganisms are removed before seeds are used for studies on plant–microbiome interactions. Unfortunately, there is no single, standardized protocol for seed sterilization, hampering progress in experimental plant growth promotion and our study shows that commonly applied sterilization protocols for barley grains using H2O2, NaClO, and AgNO3 yielded insufficient sterilization. We therefore developed a sterilization protocol with AgNO3 by testing several concentrations of AgNO3 and added two additional steps: Soaking the grains in water before the sterilization and rinsing with salt water (1% (w/w) NaCl) after the sterilization. The most efficient sterilization protocol was to soak the grains, sterilize with 10% (w/w) AgNO3, and to rinse with salt water. By following those three steps, 97% of the grains had no culturable, viable microorganism after 21 days based on microscopic inspection. The protocol left small quantities of AgNO3 residue on the grain, maintained germination percentage similar to unsterilized grains, and plant biomass was unaltered. Hence, our protocol using AgNO3 can be used successfully for experiments on plant–microbiome interactions.

OriginalsprogEngelsk
Artikelnummer372
TidsskriftPlants
Vol/bind9
Udgave nummer3
Antal sider16
ISSN2223-7747
DOI
StatusUdgivet - 2020

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 239859967