[68Ga]Ga-NODAGA-E[(cRGDyK)]2 and [64Cu]Cu-DOTATATE PET Predict Improvement in Ischemic Cardiomyopathy

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 1,99 MB, PDF-dokument

An increasing number of patients are living with chronic ischemic cardiomyopathy (ICM) and/or heart failure. Treatment options and prognostic tools are lacking for many of these patients. Our aim was to investigate the prognostic value of imaging angiogenesis and macrophage activation via positron emission tomography (PET) in terms of functional improvement after cell therapy. Myocardial infarction was induced in rats. Animals were scanned with [18F]FDG PET and echocardiography after four weeks and randomized to allogeneic adipose tissue-derived stromal cells (ASCs, n = 18) or saline (n = 9). Angiogenesis and macrophage activation were assessed before and after treatment by [68Ga]Ga-RGD and [64Cu]Cu-DOTATATE. There was no overall effect of the treatment. Rats that improved left ventricular ejection fraction (LVEF) had higher uptake of both [68Ga]Ga-RGD and [64Cu]Cu-DOTATATE at follow-up (p = 0.006 and p = 0.008, respectively). The uptake of the two tracers correlated with each other (r = 0.683, p = 0.003 pre-treatment and r = 0.666, p = 0.004 post-treatment). SUVmax at follow-up could predict improvement in LVEF (p = 0.016 for [68Ga]Ga-RGD and p = 0.045 for [64Cu]Cu-DOTATATE). High uptake of [68Ga]Ga-RGD and [64Cu]Cu-DOTATATE PET after injection of ASCs or saline preceded improvement in LVEF. The use of these tracers could improve the monitoring of heart failure patients in treatment.

OriginalsprogEngelsk
Artikelnummer268
TidsskriftDiagnostics
Vol/bind13
Udgave nummer2
Antal sider15
ISSN2075-4418
DOI
StatusUdgivet - 2023

Bibliografisk note

Funding Information:
This project was supported by the Aase and Ejnar Danielsens Foundation, Sofus Carl Emil and Wife Olga Doris Friis’ Scholarship, Innovation Fund Denmark, Novo Nordisk Foundation grant number NNF18SA0034956, Lundbeck Foundation, the Danish National Research Foundation (grant 126), the Research Council of the Capital Region of Denmark, the John and Birthe Meyer Foundation and Research Council for Independent Research. Andreas Kjaer is a Lundbeck Foundation Professor.

Publisher Copyright:
© 2023 by the authors.

ID: 334855924