Martin Lillholm
Professor
Machine Learning
Universitetsparken 1
2100 København Ø
ORCID: 0000-0002-1402-6899
1 - 2 ud af 2Pr. side: 10
- 2015
- Udgivet
Assessing breast cancer masking risk in full field digital mammography with automated texture analysis
Kallenberg, M. G. J., Lillholm, Martin, Diao, P., Holland, K., Karssemeijer, N., Igel, Christian & Nielsen, Mads, 2015, 7th International Workshop on Breast Densitometry and Cancer Risk Assessment (Non-CME). University of California, s. 109 1 s.Publikation: Bidrag til bog/antologi/rapport › Konferenceabstrakt i proceedings › Forskning › fagfællebedømt
- Udgivet
Assessing breast cancer masking risk with automated texture analysis in full field digital mammography
Kallenberg, M. G. J., Lillholm, Martin, Diao, P., Petersen, K., Holland, K., Karssemeijer, N., Igel, Christian & Nielsen, Mads, 2015, Breast Imaging and Interventional. Radiological Society of North America, Inc, s. 218 1 s.Publikation: Bidrag til bog/antologi/rapport › Konferenceabstrakt i proceedings › Forskning › fagfællebedømt
ID: 152298477
Flest downloads
-
1607
downloads
Mammographic texture resemblance generalizes as an independent risk factor for breast cancer
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Udgivet -
607
downloads
Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: a case-control study
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Udgivet -
330
downloads
Automatic segmentation of high-and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Udgivet