Neuroglial Transmission

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Vidar Gundersen, Jon Storm-Mathisen, Linda Hildegard Bergersen

Neuroglia, the “glue” that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a “buffer” between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.
OriginalsprogEngelsk
TidsskriftPhysiological Reviews
Vol/bind95
Udgave nummer3
Sider (fra-til)695-726
Antal sider32
ISSN0031-9333
DOI
StatusUdgivet - jul. 2015

ID: 160899598