Time-transgressive tunnel-valley infill revealed by a three- dimensional sedimentary model, Hamburg, north-west Germany

Research output: Contribution to journalJournal articleResearchpeer-review

  • Adriaan Janszen
  • Julien Moreau
  • Andrea Moscariello
  • Jürgen Ehlers
  • Jens Kröger
Deep, elongated incisions, often referred to as tunnel valleys, are among the
most characteristic landforms of formerly glaciated terrains. It is commonly
thought that tunnel valleys were formed by meltwater flowing underneath large ice sheets. The sedimentary infill of these features is often highly intricate and therefore difficult to predict. This study intends to improve the comprehension of the sedimentology and to establish a conceptual model of tunnel-valley infill, which can be used as a predictive tool. To this end, the densely sampled, Pleistocene tunnel valleys in Hamburg (north-west Germany) were investigated using a dataset of 1057 deep wells containing lithological and geophysical data. The stratigraphic correlations and the resulting three-dimensional lithological model were used to assess the spatial lithological distributions and sedimentary architecture. The sedimentary succession filling the Hamburg area tunnel valleys can be subdivided into three distinct units, which are distinguished by their inferred depositional proximity to the ice margin. The overall trend of the succession shows a progressive decrease in transport energy and glacial influence through time. The rate of glacial recession appears to have been an important control on the sedimentary architecture of the tunnel-valley fill. During periods of stagnation, thick ice-proximal deposits accumulated at the ice margin, while
during rapid recession, only a thin veneer of such coarse-grained sediments was deposited. Ice-distal and non-glaciogenic deposits (i.e. lacustrine, marine and terrestrial) fill the remaining part of the incision. The infill architecture suggests formation and subsequent infill of the tunnel valleys at the outer margin of the Elsterian ice sheet during its punctuated northwards recession. The proposed model shows how the history of ice-sheet recession determines the position of coarse-grained depocentres, while the post-glacial history controls the deposition of fines through a progressive infill of remnant depressions.
Original languageEnglish
JournalSedimentology
Volume60
Issue number3
Pages (from-to)693-719
Number of pages27
ISSN0037-0746
DOIs
Publication statusPublished - 2013

ID: 37972888