Development and validation of an ICP-OES method for quantitation of elemental impurities in tablets according to coming US pharmacopeia chapters

Research output: Contribution to journalJournal articleResearchpeer-review

May 1, 2014 the United States Pharmacopeia (USP) will implement two new chapters stating limit concentrations of elemental impurities in pharmaceuticals applying inductively coupled plasma methods. In the present work an inductively coupled plasma optical emission spectrometry (ICP-OES) method for quantitation of As, Cd, Cu, Cr, Fe, Hg, Ir, Mn, Mo, Ni, Os, Pb, Pd, Pt, Rh, Ru, V and Zn in tablets according to the new USP chapters was developed. Sample preparation was performed by microwave-assisted acid digestion using a mixture of 65% HNO3 and 37% HCl (3:1, v/v). Limits of detection and quantitation were at least a factor of ten below the USP limit concentrations showing that the ICP-OES technique is well suited for quantitation of elemental impurities. Excluding Os, spike recoveries in the range of 85.3-103.8% were obtained with relative standard deviations (%RSD) ranging from 1.3 to 3.2%. Due to memory effects the spike recovery and %RSD of Os were 161.5% and 13.7%, respectively, thus the method will need further development with respect to elimination of the memory effect of Os. The method was proven to be specific but with potential spectral interference for Ir, Os, Pb, Pt and Rh necessitating visual examination of the spectra. Hg memory effect was handled by using lower spike levels combined with rinsing with 0.1M HCl. The tablets had a content of Fe and Pt of 182.8±18.1 and 2.8±0.2μg/g, respectively and did therefore not exceed the limit concentration defined by USP. It is suggested that the developed method is applicable to pharmaceutical products with a composition and maximal amount of daily intake (g drug product/day) similar to the tablets used in this work.
Original languageEnglish
JournalJournal of Pharmaceutical and Biomedical Analysis
Volume84
Pages (from-to)209-14
Number of pages6
ISSN0731-7085
DOIs
Publication statusPublished - Oct 2013

ID: 48801652